RESUMO
GRID1 and GRID2 encode the enigmatic GluD1 and GluD2 proteins, which form tetrameric receptors that play important roles in synapse organization and development of the central nervous system. Variation in these genes has been implicated in neurodevelopmental phenotypes. We evaluated GRID1 and GRID2 human variants from the literature, ClinVar, and clinical laboratories and found that many of these variants reside in intolerant domains, including the amino terminal domain of both GRID1 and GRID2. Other conserved regions, such as the M3 transmembrane domain, show different intolerance between GRID1 and GRID2. We introduced these variants into GluD1 and GluD2 cDNA and performed electrophysiological and biochemical assays to investigate the mechanisms of dysfunction of GRID1/2 variants. One variant in the GRID1 distal amino terminal domain resides at a position predicted to interact with Cbln2/Cbln4, and the variant disrupts complex formation between GluD1 and Cbln2, which could perturb its role in synapse organization. We also discovered that, like the lurcher mutation (GluD2-A654T), other rare variants in the GRID2 M3 domain create constitutively active receptors that share similar pathogenic phenotypes. We also found that the SCHEMA schizophrenia M3 variant GluD1-A650T produced constitutively active receptors. We tested a variety of compounds for their ability to inhibit constitutive currents of GluD receptor variants and found that pentamidine potently inhibited GluD2-T649A constitutive channels (IC50 50 nM). These results identify regions of intolerance to variation in the GRID genes, illustrate the functional consequences of GRID1 and GRID2 variants, and suggest how these receptors function normally and in disease.
Assuntos
Sistema Nervoso Central , Receptores de Glutamato , Humanos , Sistema Nervoso Central/metabolismo , Mutação , Domínios Proteicos , Receptores de Glutamato/metabolismoRESUMO
Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.
Assuntos
Doenças do Sistema Nervoso , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Mutação de Sentido Incorreto/genética , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Modelos BiológicosRESUMO
N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.
Assuntos
Epilepsia , Receptores de N-Metil-D-Aspartato , Criança , Humanos , Epilepsia/genética , Mutação de Sentido Incorreto , Fenótipo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de SinaisRESUMO
NMDA receptors (NMDARs) are ionotropic glutamate receptors that mediate a slow, Ca2+-permeable component of fast excitatory neurotransmission. Modulation of NMDAR function has the potential for disease modification as NMDAR dysfunction has been implicated in neurodevelopment, neuropsychiatric, neurological, and neurodegenerative disorders. We recently described the thieno[2,3-d]pyrimidin-4-one (EU1622) class of positive allosteric modulators, including several potent and efficacious analogs. Here we have used electrophysiological recordings from Xenopus oocytes, HEK cells, and cultured cerebellar and cortical neurons to determine the mechanisms of action of a representative member of this class of modulator. EU1622-240 enhances current response to saturating agonist (doubling response amplitude at 0.2-0.5 µM), slows the deactivation time course following rapid removal of glutamate, increases open probability, enhances co-agonist potency, and reduces single channel conductance. We also show that EU1622-240 can transform NMDARs so that they can be opened when only glutamate or glycine is bound. EU1622-240-bound NMDARs channels activated by a single agonist (glutamate or glycine) open to a unique conductance level with different pore properties and Mg2+ sensitivity, in contrast to channels arising from activation of NMDARs with both co-agonists bound. These data demonstrate that previously hypothesized distinct gating steps can be controlled by glutamate and glycine binding and shows that the 1622-series modulators enable glutamate- or glycine-bound NMDARs to generate open conformations with different pore properties. The properties of this class of allosteric modulators present intriguing therapeutic opportunities for the modulation of circuit function. Significance Statement NMDA receptors are expressed throughout the CNS and are permeable to calcium. EU1622-240 increases open probability and agonist potency, while reducing single channel conductance and prolonging the deactivation time course. EU1622-240 allows NMDA receptor activation by the binding of one co-agonist (glycine or glutamate), which produces channels with distinct properties. Evaluation of this modulator provides insight into gating mechanisms and may lead to the development of new therapeutic strategies.
RESUMO
A wealth of genetic information is available describing single-nucleotide variants in the human population that appear to be well-tolerated and in and of themselves do not confer disease. These variant data sets contain signatures about the protein structure-function relationships and provide an unbiased view of various protein functions in the context of human health. This information can be used to determine regional intolerance to variation, defined as the missense tolerance ratio (MTR), which is an indicator of stretches of the polypeptide chain that can tolerate changes without compromising protein function in a manner that impacts human health. This approach circumvents the lack of comprehensive data by averaging the data from adjacent residues on the polypeptide chain. We reasoned that many motifs in proteins consist of nonadjacent residues, but together function as a unit. We therefore developed an approach to analyze nearest neighbors in three-dimensional space as determined by crystallography rather than on the polypeptide chain. We used members of the GRIN gene family that encode subunits of NMDA-type ionotropic glutamate receptors (iGluRs) to exemplify the differences between these methods. Our method, 3DMTR, provides new information about regions of intolerance within iGluRs, allows consideration of protein-protein interfaces in multimeric proteins, and moves this important research tool from one-dimensional analysis to a structurally relevant tool. We validate the improved 3DMTR score by showing that it more accurately classifies the functional consequences of a set of newly measured and published point mutations of Grin family genes than existing methods.
Assuntos
Biologia Computacional , Proteínas , Biologia Computacional/métodos , Humanos , Mutação de Sentido Incorreto , Proteínas/genéticaRESUMO
The short pre-M1 helix within the S1-M1 linker (also referred to as the pre-M1 linker) between the agonist-binding domain (ABD, S1) and the M1 transmembrane helix of the NMDA receptor (NMDAR) is devoid of missense variants within the healthy population but is a locus for de novo pathogenic variants associated with neurological disorders. Several de novo variants within this helix have been identified in patients presenting early in life with intellectual disability, developmental delay, and/or epilepsy. In this study, we evaluated functional properties for twenty variants within the pre-M1 linker in GRIN1, GRIN2A, and GRIN2B genes, including six novel missense variants. The effects of pre-M1 variants on agonist potency, sensitivity to endogenous allosteric modulators, response time course, channel open probability, and surface expression were assessed. Our data indicated that virtually all of the variants evaluated altered channel function, and multiple variants had profound functional consequences, which may contribute to the neurological conditions in the patients harboring the variants in this region. These data strongly suggest that the residues within the pre-M1 helix play a key role in channel gating and are highly intolerant to genetic variation.
Assuntos
Epilepsia , Deficiência Intelectual , Receptores de N-Metil-D-Aspartato , Humanos , Epilepsia/genética , Mutação de Sentido Incorreto/genética , Receptores de N-Metil-D-Aspartato/metabolismoRESUMO
AMPA receptors are members of the glutamate receptor family and mediate a fast component of excitatory synaptic transmission at virtually all central synapses. Thus, their functional characteristics are a critical determinant of brain function. We evaluate intolerance of each GRIA gene to genetic variation using 3DMTR and report here the functional consequences of 52 missense variants in GRIA1-4 identified in patients with various neurological disorders. These variants produce changes in agonist EC50, response time course, desensitization, and/or receptor surface expression. We predict that these functional and localization changes will have important consequences for circuit function, and therefore likely contribute to the patients' clinical phenotype. We evaluated the sensitivity of variant receptors to AMPAR-selective modulators including FDA-approved drugs to explore potential targeted therapeutic options.
Assuntos
Doenças do Sistema Nervoso , Humanos , Doenças do Sistema Nervoso/genética , Transmissão Sináptica/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismoRESUMO
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Assuntos
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Animais , Sistema Nervoso Central , Ácido Glutâmico , Humanos , Neurotransmissores , Receptores Ionotrópicos de Glutamato/genéticaRESUMO
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling by acting as negative regulators of G proteins. Genetic variants in RGS proteins are associated with many diseases, including cancers, although the impact of these mutations on protein function is uncertain. Here we analyze the RGS domains of 15 RGS protein family members using a novel bioinformatic tool that measures the missense tolerance ratio (MTR) using a three-dimensional (3D) structure (3DMTR). Subsequent permutation analysis can define the protein regions that are most significantly intolerant (P < 0.05) in each dataset. We further focused on RGS14, RGS10, and RGS4. RGS14 exhibited seven significantly tolerant and seven significantly intolerant residues, RGS10 had six intolerant residues, and RGS4 had eight tolerant and six intolerant residues. Intolerant and tolerant-control residues that overlap with pathogenic cancer mutations reported in the COSMIC cancer database were selected to define the functional phenotype. Using complimentary cellular and biochemical approaches, proteins were tested for effects on GPCR-Gα activation, Gα binding properties, and downstream cAMP levels. Identified intolerant residues with reported cancer-linked mutations RGS14-R173C/H and RGS4-K125Q/E126K, and tolerant RGS14-S127P and RGS10-S64T resulted in a loss-of-function phenotype in GPCR-G protein signaling activity. In downstream cAMP measurement, tolerant RGS14-D137Y and RGS10-S64T and intolerant RGS10-K89M resulted in change of function phenotypes. These findings show that 3DMTR identified intolerant residues that overlap with cancer-linked mutations cause phenotypic changes that negatively impact GPCR-G protein signaling and suggests that 3DMTR is a potentially useful bioinformatics tool for predicting functionally important protein residues. SIGNIFICANCE STATEMENT: Human genetic variant/mutation information has expanded rapidly in recent years, including cancer-linked mutations in regulator of G protein signaling (RGS) proteins. However, experimental testing of the impact of this vast catalogue of mutations on protein function is not feasible. We used the novel bioinformatics tool three-dimensional missense tolerance ratio (3DMTR) to define regions of genetic intolerance in RGS proteins and prioritize which cancer-linked mutants to test. We found that 3DMTR more accurately classifies loss-of-function mutations in RGS proteins than other databases thereby offering a valuable new research tool.
Assuntos
Neoplasias , Proteínas RGS , Humanos , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transdução de Sinais/genética , Proteínas de Ligação ao GTP/metabolismo , Mutação , Neoplasias/genéticaRESUMO
N-methyl-D-aspartate receptors (NMDAR), ionotropic glutamate receptors, mediate a slow component of excitatory synaptic transmission in the central nervous system and play a key role in normal brain function and development. Genetic variations in GRIN genes encoding NMDAR subunits that alter the receptor's functional characteristics are associated with a wide range of neurological and neuropsychiatric conditions. Pathological GRIN variants located in the M2 re-entrant loop lining the channel pore cause significant functional changes, the most consequential alteration being a reduction in voltage-dependent Mg2+ inhibition. Voltage-dependent Mg2+ block is a unique feature of NMDAR biology whereby channel activation requires both ligand binding and postsynaptic membrane depolarization. Thus, loss of NMDAR Mg2+ block will have a profound impact on synaptic function and plasticity. Here, we choose 11 missense variants within the GRIN1, GRIN2A, and GRIN2B genes that alter residues located in the M2 loop and significantly reduce Mg2+ inhibition. Each variant was evaluated for tolerance to genetic variation using the 3-dimensional structure and assessed for functional rescue pharmacology via electrophysiological recordings. Three FDA-approved NMDAR drugs-memantine, dextromethorphan, and ketamine-were chosen based on their ability to bind near the M2 re-entrant loop, potentially rectifying dysregulated NMDAR function by supplementing the reduced voltage-dependent Mg2+ block. These results provide insight of structural determinants of FDA-approved NMDAR drugs at their binding sites in the channel pore and may further define conditions necessary for the use of such agents as potential rescue pharmacology.
RESUMO
OBJECTIVE: To investigate the clinical features and potential pathogenesis mechanism of de novo CLPTM1 variants associated with epilepsy. METHODS: Identify de novo genetic variants associated with epilepsy by reanalyzing trio-based whole-exome sequencing data. We analyzed the clinical characteristics of patients with these variants and performed functional in vitro studies in cells expressing mutant complementary DNA for these variants using whole-cell voltage-clamp current recordings and outside-out patch-clamp recordings from transiently transfected human embryonic kidney (HEK) cells. RESULTS: Two de novo missense variants related to epilepsy were identified in the CLPTM1 gene. Functional studies indicated that CLPTM1-p.R454H and CLPTM1-p.R568Q variants reduced the γ-aminobutyric acid A receptor (GABAA R) current response amplitude recorded under voltage clamp compared to the wild-type receptors. These variants also reduced the charge transfer and altered the time course of desensitization and deactivation following rapid removal of GABA. The surface expression of the GABAA R γ2 subunit from the CLPTM1-p.R568Q group was significantly reduced compared to CLPTM1-WT. SIGNIFICANCE: This is the first report of functionally relevant variants within the CLPTM1 gene. Patch-clamp recordings showed that these de novo CLPTM1 variants reduce GABAA R currents and charge transfer, which should promote excitation and hypersynchronous activity. This study may provide insights into the molecular mechanisms of the CLPTM1 variants underlying the patients' phenotypes, as well as for exploring potential therapeutic targets for epilepsy.
Assuntos
Epilepsia , Receptores de GABA-A , Humanos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Epilepsia/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Ácido gama-Aminobutírico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
N-methyl-D-aspartate receptors (NMDARs) are tetrameric assemblies of two glutamate N-methyl-D-aspartate receptor subunits, GluN1 and two GluN2, that mediate excitatory synaptic transmission in the central nervous system. Four genes (GRIN2A-D) encode four distinct GluN2 subunits (GluN2A-D). Thus, NMDARs can be diheteromeric assemblies of two GluN1 plus two identical GluN2 subunits, or triheteromeric assemblies of two GluN1 subunits plus two different GluN2 subunits. An increasing number of de novo GRIN variants have been identified in patients with neurologic conditions and with GRIN2A and GRIN2B harboring the vast majority (> 80%) of variants in these cases. These variants produce a wide range of effects on NMDAR function depending upon its subunit subdomain location and additionally on the subunit composition of diheteromeric versus triheteromeric NMDARs. Increasing evidence implicates triheteromeric GluN1/GluN2A/GluN2B receptors as a major component of the NMDAR pool in the adult cortex and hippocampus. Here, we explore the ability of GluN2A- and GluN2B-selective inhibitors to reduce excess current flow through triheteromeric GluN1/GluN2A/GluN2B receptors that contain one copy of GRIN2A or GRIN2B gain-of-function variants. Our data reveal a broad range of sensitivities for variant-containing triheteromeric receptors to subunit-selective inhibitors, with some variants still showing strong sensitivity to inhibitors, whereas others are relatively insensitive. Most variants, however, retain sensitivity to non-selective channel blockers and the competitive antagonist D-(-)-2-amino-5-phosphonopentanoic acid. These results suggest that with comprehensive analysis, certain disease-related GRIN2A and GRIN2B variants can be identified as potential targets for subunit-selective modulation and potential therapeutic gain. SIGNIFICANCE STATEMENT: Triheteromeric NMDA receptors that contain one copy each of the GluN2A and GluN2B subunits show intermediate sensitivity to GluN2A- and GluN2B-selective inhibitors, making these compounds candidates for attenuating overactive, GRIN variant-containing NMDA receptors associated with neurological conditions. We show that functional evaluation of variant properties with inhibitor pharmacology can support selection of a subset of variants for which GluN2 subunit-selective agents remain effective inhibitors of variant-containing triheteromeric NMDA receptors.
Assuntos
Mutação com Ganho de Função , Receptores de N-Metil-D-Aspartato , Hipocampo/metabolismo , Humanos , Transmissão SinápticaRESUMO
Allosteric modulators of ion channels typically alter the transitions rates between conformational states without changing the properties of the open pore. Here we describe a new class of positive allosteric modulators of N-methyl D-aspartate receptors (NMDARs) that mediate a calcium-permeable component of glutamatergic synaptic transmission and play essential roles in learning, memory and cognition, as well as neurological disease. EU1622-14 increases agonist potency and channel-open probability, slows receptor deactivation and decreases both single-channel conductance and calcium permeability. The unique functional selectivity of this chemical probe reveals a mechanism for enhancing NMDAR function while limiting excess calcium influx, and shows that allosteric modulators can act as biased modulators of ion-channel permeation.
Assuntos
Pirrolidinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células Cultivadas , Feminino , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Glicina/metabolismo , Glicina/farmacologia , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/genética , Xenopus laevisRESUMO
Communication between neuronal cells, which is central to brain function, is performed by several classes of ligand-gated ionotropic receptors. The gold-standard technique for measuring rapid receptor response to agonist is manual patch-clamp electrophysiology, capable of the highest temporal resolution of any current electrophysiology technique. We report an automated high-precision patch-clamp system that substantially improves the throughput of these time-consuming pharmacological experiments. The patcherBotPharma enables recording from cells expressing receptors of interest and manipulation of them to enable millisecond solution exchange to activate ligand-gated ionotropic receptors. The solution-handling control allows for autonomous pharmacological concentration-response experimentation on adherent cells, lifted cells, or excised outside-out patches. The system can perform typical ligand-gated ionotropic receptor experimentation protocols autonomously, possessing a high success rate in completing experiments and up to a 10-fold reduction in research effort over the duration of the experiment. Using it, we could rapidly replicate previous data sets, reducing the time it took to produce an eight-point concentration-response curve of the effect of propofol on GABA type A receptor deactivation from likely weeks of recording to â¼13 hours of recording. On average, the rate of data collection of the patcherBotPharma was a data point every 2.1 minutes that the operator spent interacting with the patcherBotPharma The patcherBotPharma provides the ability to conduct complex and comprehensive experimentation that yields data sets not normally within reach of conventional systems that rely on constant human control. This technical advance can contribute to accelerating the examination of the complex function of ion channels and the pharmacological agents that act on them. SIGNIFICANCE STATEMENT: This work presents an automated intracellular pharmacological electrophysiology robot, patcherBotPharma, that substantially improves throughput and reduces human time requirement in pharmacological patch-clamp experiments. The robotic system includes millisecond fluid exchange handling and can perform highly efficient ligand-gated ionotropic receptor experiments. The patcherBotPharma is built using a conventional patch-clamp rig, and the technical advances shown in this work greatly accelerate the ability to conduct high-fidelity pharmacological electrophysiology.
Assuntos
Neurônios/citologia , Técnicas de Patch-Clamp/instrumentação , Receptores de GABA-A/metabolismo , Animais , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , Cultura Primária de Células , Ratos , RobóticaRESUMO
NMDA receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic currents. These receptors are involved in several important brain functions, including learning and memory, and have also been implicated in neuropathological conditions and acute central nervous system injury, which has driven therapeutic interest in their modulation. The EU1794 series of positive and negative allosteric modulators of NMDA receptors has structural determinants of action near the preM1 helix that is involved in channel gating. Here, we describe the effects of the negative allosteric modulator EU1794-4 on GluN1/GluN2A channels studied in excised outside-out patches. Coapplication of EU1794-4 with a maximally effective concentration of glutamate and glycine increases the fraction of time the channel is open by nearly 1.5-fold, yet reduces single-channel conductance by increasing access of the channel to several subconductance levels, which has the net overall effect of reducing the macroscopic current. The lack of voltage-dependence of negative modulation suggests this is unrelated to a channel block mechanism. As seen with other NMDA receptor modulators that reduce channel conductance, EU1794-4 also reduces the Ca2+ permeability relative to monovalent cations of GluN1/GluN2A receptors. We conclude that EU1794-4 is a prototype for a new class of NMDA receptor negative allosteric modulators that reduce both the overall current that flows after receptor activation and the flux of Ca2+ ion relative to monovalent cations. SIGNIFICANCE STATEMENT: NMDA receptors are implicated in many neurological conditions but are challenging to target given their ubiquitous expression. Several newly identified properties of the negative allosteric modulator EU1794-4, including reducing Ca2+ flux through NMDA receptors and attenuating channel conductance, explain why this modulator reduces but does not eliminate NMDA receptor function. A modulator with these properties could have therapeutic advantages for indications in which attenuation of NMDA receptor function is beneficial, such as neurodegenerative disease and acute injury.
Assuntos
Regulação Alostérica/efeitos dos fármacos , Cálcio/metabolismo , Permeabilidade/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Células HEK293 , Humanos , Xenopus laevisRESUMO
Glutamate receptors are essential ligand-gated ion channels in the central nervous system that mediate excitatory synaptic transmission in response to the release of glutamate from presynaptic terminals. The structural and biophysical basis underlying the function of these receptors has been studied for decades by a wide range of approaches. However recent structural, pharmacological and genetic studies have provided new insight into the regions of this protein that are critical determinants of receptor function. Lack of variation in specific areas of the protein amino acid sequences in the human population has defined three regions in each receptor subunit that are under selective pressure, which has focused research efforts and driven new hypotheses. In addition, these three closely positioned elements reside near a cavity that is shown by multiple studies to be a likely site of action for allosteric modulators, one of which is currently in use as an FDA-approved anticonvulsant. These structural elements are capable of controlling gating of the pore, and appear to permit some modulators bound within the cavity to also alter permeation properties. This creates a new precedent whereby features of the channel pore can be modulated by exogenous drugs that bind outside the pore. The convergence of structural, genetic, biophysical and pharmacological approaches is a powerful means to gain insight into the complex biological processes defined by neurotransmitter receptor function.
Assuntos
Distinções e Prêmios , Canais Iônicos de Abertura Ativada por Ligante , Fenômenos Biofísicos , Ácido Glutâmico , Humanos , Receptores de GlutamatoRESUMO
N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamatergic receptors that have been implicated in learning, development, and neuropathological conditions. They are typically composed of GluN1 and GluN2A-D subunits. Whereas a great deal is known about the role of GluN2A- and GluN2B-containing NMDARs, much less is known about GluN2D-containing NMDARs. Here we explore the subunit composition of synaptic NMDARs on hippocampal interneurons. GluN2D mRNA was detected by single-cell PCR and in situ hybridization in diverse interneuron subtypes in the CA1 region of the hippocampus. The GluN2D subunit was detectable by immunoblotting and immunohistochemistry in all subfields of the hippocampus in young and adult mice. In whole-cell patch-clamp recordings from acute hippocampal slices, (+)-CIQ, the active enantiomer of the positive allosteric modulator CIQ, significantly enhanced the amplitude of the NMDAR component of miniature excitatory postsynaptic currents (mEPSCs) in CA1 interneurons but not in pyramidal cells. (+)-CIQ had no effect in slices from Grin2d-/- mice, suggesting that GluN2D-containing NMDARs participate in excitatory synaptic transmission onto hippocampal interneurons. The time course of the NMDAR component of the mEPSC was unaffected by (+)-CIQ potentiation and was not accelerated in slices from Grin2d-/- mice compared with wild-type, suggesting that GluN2D does not detectably slow the NMDAR EPSC time course at this age. (+)-CIQ increased the activity of CA1 interneurons as detected by the rate and net charge transfer of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from CA1 pyramidal cells. These data provide evidence that interneurons contain synaptic NMDARs possessing a GluN2D subunit, which can influence interneuron function and signal processing.
Assuntos
Hipocampo/citologia , Interneurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Regulação Alostérica/efeitos dos fármacos , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Isoquinolinas/farmacologia , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de N-Metil-D-Aspartato/genética , Estereoisomerismo , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo , Xenopus laevisRESUMO
NMDA receptors mediate a slow Ca(2+)-permeable component of excitatory synaptic transmission, and are involved in numerous normal brain functions including learning and memory. NMDA receptor over-activation can lead to cell death and abnormal excitation in ischemia associated with stroke, traumatic brain injury, and epilepsy. We have explored a series of novel noncompetitive allosteric modulators of NMDA receptor function characterized by an iminothiazolidinone ring. Saturating concentrations of these compounds inhibit NMDA receptors to varying maximal extents, raising the possibility that they may attenuate over-activation in pathological situations while preserving some minimal receptor function, which may limit side-effects. The best in class compounds have sub-micromolar IC50 values and show modest preference for GluN2C- and GluN2D-containing receptors.
Assuntos
Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Tiazolidinas/síntese química , Regulação Alostérica , Concentração Inibidora 50 , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Solubilidade , Relação Estrutura-Atividade , Tiazolidinas/química , Tiazolidinas/farmacologiaRESUMO
N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer's disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.
Assuntos
Psiquiatria , Esquizofrenia , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervoso Central , Encéfalo/metabolismoRESUMO
N-methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels assembled from GluN1 and GluN2 subunits. We used a series of N-hydroxypyrazole-5-glycine (NHP5G) partial agonists at the GluN2 glutamate binding site as tools to study activation of GluN1/GluN2A and GluN1/GluN2D NMDA receptor subtypes. Using two-electrode voltage-clamp electrophysiology, fast-application patch-clamp, and single-channel recordings, we show that propyl- and ethyl-substituted NHP5G agonists have a broad range of agonist efficacies relative to the full agonist glutamate (<1-72%). Crystal structures of the agonist binding domains (ABDs) of GluN2A and GluN2D do not reveal any differences in the overall domain conformation induced by binding of the full agonist glutamate or the partial agonist propyl-NHP5G, which is strikingly different from ABD structures of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoate (AMPA) and kainate receptors bound to full and partial agonists. Subsequent evaluation of relative NHP5G agonist efficacy at GluN2A-GluN2D chimeric subunits implicates the amino-terminal domain (ATD) as a strong determinant of agonist efficacy, suggesting that interdomain interactions between the ABD and the ATD may be a central element in controlling the manner by which agonist binding leads to channel opening. We propose that variation in the overall receptor conformation, which is strongly influenced by the nature of interdomain interactions in resting and active states, mediates differences in agonist efficacy and partial agonism at the GluN2 subunits.