Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurosci ; 41(24): 5173-5189, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33931552

RESUMO

We developed a method for single-cell resolution longitudinal bioluminescence imaging of PERIOD (PER) protein and TIMELESS (TIM) oscillations in cultured male adult Drosophila brains that captures circadian circuit-wide cycling under simulated day/night cycles. Light input analysis confirms that CRYPTOCHROME (CRY) is the primary circadian photoreceptor and mediates clock disruption by constant light (LL), and that eye light input is redundant to CRY; 3-h light phase delays (Friday) followed by 3-h light phase advances (Monday morning) simulate the common practice of staying up later at night on weekends, sleeping in later on weekend days then returning to standard schedule Monday morning [weekend light shift (WLS)]. PER and TIM oscillations are highly synchronous across all major circadian neuronal subgroups in unshifted light schedules for 11 d. In contrast, WLS significantly dampens PER oscillator synchrony and rhythmicity in most circadian neurons during and after exposure. Lateral ventral neuron (LNv) oscillations are the first to desynchronize in WLS and the last to resynchronize in WLS. Surprisingly, the dorsal neuron group-3 (DN3s) increase their within-group synchrony in response to WLS. In vivo, WLS induces transient defects in sleep stability, learning, and memory that temporally coincide with circuit desynchrony. Our findings suggest that WLS schedules disrupt circuit-wide circadian neuronal oscillator synchrony for much of the week, thus leading to observed behavioral defects in sleep, learning, and memory.


Assuntos
Encéfalo/fisiopatologia , Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Rede Nervosa/fisiopatologia , Proteínas Circadianas Period/metabolismo , Animais , Encéfalo/metabolismo , Drosophila , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Rede Nervosa/metabolismo , Sono/fisiologia
2.
Proc Natl Acad Sci U S A ; 114(12): 3121-3126, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270600

RESUMO

The mammary gland consists of an adipose tissue that, in a process called branching morphogenesis, is invaded by a ductal epithelial network comprising basal and luminal epithelial cells. Stem and progenitor cells drive mammary growth, and their proliferation is regulated by multiple extracellular cues. One of the key regulatory pathways for these cells is the ß-catenin-dependent, canonical wingless-type MMTV integration site family (WNT) signaling pathway; however, the role of noncanonical WNT signaling within the mammary stem/progenitor system remains elusive. Here, we focused on the noncanonical WNT receptors receptor tyrosine kinase-like orphan receptor 2 (ROR2) and receptor-like tyrosine kinase (RYK) and their activation by WNT5A, one of the hallmark noncanonical WNT ligands, during mammary epithelial growth and branching morphogenesis. We found that WNT5A inhibits mammary branching morphogenesis in vitro and in vivo through the receptor tyrosine kinase ROR2. Unexpectedly, WNT5A was able to enhance mammary epithelial growth, which is in contrast to its next closest relative WNT5B, which potently inhibits mammary stem/progenitor proliferation. We found that RYK, but not ROR2, is necessary for WNT5A-mediated promotion of mammary growth. These findings provide important insight into the biology of noncanonical WNT signaling in adult stem/progenitor cell regulation and development. Future research will determine how these interactions go awry in diseases such as breast cancer.


Assuntos
Epitélio/metabolismo , Glândulas Mamárias Animais/metabolismo , Morfogênese , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Morfogênese/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Wnt/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
3.
Nat Genet ; 55(4): 595-606, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914836

RESUMO

Women with germline BRCA1 mutations (BRCA1+/mut) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1+/mut is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans. Using single-cell RNA sequencing analysis of human preneoplastic BRCA1+/mut and noncarrier breast tissues, we show distinct changes in epithelial homeostasis including increased proliferation and expansion of basal-luminal intermediate progenitor cells. Additionally, BRCA1+/mut stromal cells show increased expression of pro-proliferative paracrine signals. In particular, we identify pre-cancer-associated fibroblasts (pre-CAFs) that produce protumorigenic factors including matrix metalloproteinase 3 (MMP3), which promotes BRCA1-driven tumorigenesis in vivo. Together, our findings demonstrate that precancerous stroma in BRCA1+/mut may elevate breast cancer risk through the promotion of epithelial proliferation and an accumulation of luminal progenitor cells with altered differentiation.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Feminino , Humanos , Mutação , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/metabolismo , Glândulas Mamárias Humanas/metabolismo , Carcinogênese/patologia , Células Estromais/patologia
4.
Sci Adv ; 9(27): eadd9984, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418531

RESUMO

Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 (gal-3) and osteopontin (Spp1). Spatial transcriptomics, computational inferences of intercellular communication, and in vitro assays indicated that macrophage-derived Spp1 regulates stromal progenitor differentiation. Gal-3+ macrophages were chronically activated in dystrophic muscle, and adoptive transfer assays showed that the gal-3+ phenotype was the dominant molecular program induced within the dystrophic milieu. Gal-3+ macrophages were also elevated in multiple human myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining their transcriptional programs and reveal Spp1 as a major regulator of macrophage and stromal progenitor interactions.


Assuntos
Macrófagos , Transcriptoma , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Fibrose
5.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131694

RESUMO

The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.

6.
Methods Mol Biol ; 2236: 177-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33237548

RESUMO

Single-cell transcriptomics is a powerful tool to study previously unrealized cellular heterogeneity at the resolution of individual cells. Most of the previous knowledge in cell biology is based on data generated by bulk analysis methods, which provide averaged readouts that usually mask cellular heterogeneity. This approach is challenging when the biological effect of interest is limited to a subpopulation within a cell type. This may particularly apply immune cell populations as these cells are highly mobile and swiftly respond to changes in cytokines or chemokines. For example, in cancer certain subset of myeloid immune cells may acquire immunosuppressive features to suppress antitumor immune responses, and thus described as myeloid-derived suppressor cells (MDSCs). Advances in single-cell RNA sequencing (scRNAseq) allowed scientists to overcome this limitation and enable in-depth interrogation of these subsets of immune cells including MDSCs. Here, we provide a detailed protocol for using scRNAseq to explore MDSCs in the context of splenic myeloid cells from breast tumor-bearing mice in comparison to wildtype controls to define the unique molecular features of immunosuppressive myeloid cells.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias Mamárias Animais/patologia , Células Supressoras Mieloides/metabolismo , Análise de Célula Única/métodos , Baço/patologia , Animais , Biologia Computacional , Feminino , Camundongos Transgênicos , Controle de Qualidade , Reprodutibilidade dos Testes , Fluxo de Trabalho
7.
Lab Chip ; 21(7): 1333-1351, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33605955

RESUMO

Around 95% of anti-cancer drugs that show promise during preclinical study fail to gain FDA-approval for clinical use. This failure of the preclinical pipeline highlights the need for improved, physiologically-relevant in vitro models that can better serve as reliable drug-screening and disease modeling tools. The vascularized micro-tumor (VMT) is a novel three-dimensional model system (tumor-on-a-chip) that recapitulates the complex human tumor microenvironment, including perfused vasculature, within a transparent microfluidic device, allowing real-time study of drug responses and tumor-stromal interactions. Here we have validated this microphysiological system (MPS) platform for the study of colorectal cancer (CRC), the second leading cause of cancer-related deaths, by showing that gene expression, tumor heterogeneity, and treatment responses in the VMT more closely model CRC tumor clinicopathology than current standard drug screening modalities, including 2-dimensional monolayer culture and 3-dimensional spheroids.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Dispositivos Lab-On-A-Chip , Microambiente Tumoral
8.
Cell Rep ; 33(3): 108273, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086071

RESUMO

The mammary epithelial cell (MEC) system is a bilayered ductal epithelium of luminal and basal cells, maintained by a lineage of stem and progenitor populations. Here, we used integrated single-cell transcriptomics and chromatin accessibility analysis to reconstruct the cell types of the mouse MEC system and their underlying gene regulatory features in an unbiased manner. We define differentiation states within the secretory type of luminal cells, which forms a continuous spectrum of general luminal progenitor and lactation-committed progenitor cells. By integrating single-cell transcriptomics and chromatin accessibility landscapes, we identify cis- and trans-regulatory elements that are differentially activated in the specific epithelial cell types and our newly defined luminal differentiation states. Our work provides a resource to reveal cis/trans-regulatory elements associated with MEC identity and differentiation that will serve as a reference to determine how the chromatin accessibility landscape changes during breast cancer.


Assuntos
Cromatina/genética , Células Epiteliais/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Linhagem da Célula , Proliferação de Células/genética , Cromatina/fisiologia , Biologia Computacional/métodos , Células Epiteliais/fisiologia , Epitélio/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Sequências Reguladoras de Ácido Nucleico , Análise de Célula Única/métodos , Células-Tronco/metabolismo , Transcriptoma
9.
Sci Immunol ; 5(44)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32086381

RESUMO

Myeloid-derived suppressor cells (MDSCs) are innate immune cells that acquire the capacity to suppress adaptive immune responses during cancer. It remains elusive how MDSCs differ from their normal myeloid counterparts, which limits our ability to specifically detect and therapeutically target MDSCs during cancer. Here, we sought to determine the molecular features of breast cancer-associated MDSCs using the widely studied mouse model based on the mouse mammary tumor virus (MMTV) promoter-driven expression of the polyomavirus middle T oncoprotein (MMTV-PyMT). To identify MDSCs in an unbiased manner, we used single-cell RNA sequencing to compare MDSC-containing splenic myeloid cells from breast tumor-bearing mice with wild-type controls. Our computational analysis of 14,646 single-cell transcriptomes revealed that MDSCs emerge through an aberrant neutrophil maturation trajectory in the spleen that confers them an immunosuppressive cell state. We establish the MDSC-specific gene signature and identify CD84 as a surface marker for improved detection and enrichment of MDSCs in breast cancers.


Assuntos
Neoplasias da Mama/patologia , Células Supressoras Mieloides/patologia , Análise de Célula Única , Transcriptoma , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/imunologia , Diferenciação Celular/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Células Supressoras Mieloides/imunologia , RNA Neoplásico/genética , RNA Neoplásico/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia
10.
Front Cell Dev Biol ; 6: 108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30234113

RESUMO

Single-cell transcriptomic technologies have emerged as powerful tools to explore cellular heterogeneity at the resolution of individual cells. Previous scientific knowledge in cell biology is largely limited to data generated by bulk profiling methods, which only provide averaged read-outs that generally mask cellular heterogeneity. This averaged approach is particularly problematic when the biological effect of interest is limited to only a subpopulation of cells such as stem/progenitor cells within a given tissue, or immune cell subsets infiltrating a tumor. Great advances in single-cell RNA sequencing (scRNAseq) enabled scientists to overcome this limitation and allow for in depth interrogation of previously unexplored rare cell types. Due to the high sensitivity of scRNAseq, adequate attention must be put into experimental setup and execution. Careful handling and processing of cells for scRNAseq is critical to preserve the native expression profile that will ensure meaningful analysis and conclusions. Here, we delineate the individual steps of a typical single-cell analysis workflow from tissue procurement, cell preparation, to platform selection and data analysis, and we discuss critical challenges in each of these steps, which will serve as a helpful guide to navigate the complex field of single-cell sequencing.

11.
Nat Cell Biol ; 20(12): 1349-1360, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30482943

RESUMO

Tumours comprise a heterogeneous collection of cells with distinct genetic and phenotypic properties that can differentially promote progression, metastasis and drug resistance. Emerging single-cell technologies provide a new opportunity to profile individual cells within tumours and investigate what roles they play in these processes. This Review discusses key technological considerations for single-cell studies in cancer, new findings using single-cell technologies and critical open questions for future applications.


Assuntos
Biomarcadores Tumorais/genética , Heterogeneidade Genética , Neoplasias/genética , Análise de Célula Única/métodos , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Microambiente Tumoral/genética
12.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010747

RESUMO

Ulcerative colitis is a chronic inflammatory disease of the colon that carries a significant disease burden in children. Therefore, new therapeutic approaches are being explored to help children living with this disease. Fecal microbiota transplantation (FMT) has been successful in some children with ulcerative colitis. However, the mechanism of its therapeutic effect in this patient population is not well understood. To characterize changes in gut microbial and metabolomic profiles after FMT, we performed 16S rRNA gene sequencing, shotgun metagenomic sequencing, virome analysis and untargeted metabolomics by gas chromatography-time of flight-mass spectrometry on stool samples collected before and after FMT from four children with ulcerative colitis who responded to this treatment. Alpha diversity of the gut microbiota increased after intervention, with species richness rising from 251 (S.D. 125) to 358 (S.D. 27). In responders, the mean relative abundance of bacteria in the class Clostridia shifted toward donor levels, increasing from 33% (S.D. 11%) to 54% (S.D. 16%). Patient metabolomic and viromic profiles exhibited a similar but less pronounced shift toward donor profiles after FMT. The fecal concentrations of several metabolites were altered after FMT, correlating with clinical improvement. Larger studies using a similar multi-omics approach may suggest novel strategies for the treatment of pediatric ulcerative colitis.


Assuntos
Clostridiaceae/isolamento & purificação , Colite Ulcerativa/microbiologia , Colite Ulcerativa/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Criança , Clostridiaceae/classificação , Clostridiaceae/genética , Fezes/microbiologia , Feminino , Humanos , Masculino , Metabolômica , Metagenômica , RNA Ribossômico 16S/genética
13.
Nat Commun ; 9(1): 2028, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795293

RESUMO

Breast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell populations, one basal and two luminal cell types, which we identify as secretory L1- and hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation trajectories produces one continuous lineage hierarchy that closely connects the basal lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides insights into the cellular blueprint of the human breast epithelium and will form the foundation to understand how the system goes awry during breast cancer.


Assuntos
Neoplasias da Mama/genética , Mama/citologia , Células Epiteliais/fisiologia , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Adulto , Biomarcadores Tumorais/genética , Mama/patologia , Neoplasias da Mama/patologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Análise por Conglomerados , Feminino , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA