Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(24): 5066-5081.e10, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34798055

RESUMO

Autophagy is a conserved intracellular degradation pathway exerting various cytoprotective and homeostatic functions by using de novo double-membrane vesicle (autophagosome) formation to target a wide range of cytoplasmic material for vacuolar/lysosomal degradation. The Atg1 kinase is one of its key regulators, coordinating a complex signaling program to orchestrate autophagosome formation. Combining in vitro reconstitution and cell-based approaches, we demonstrate that Atg1 is activated by lipidated Atg8 (Atg8-PE), stimulating substrate phosphorylation along the growing autophagosomal membrane. Atg1-dependent phosphorylation of Atg13 triggers Atg1 complex dissociation, enabling rapid turnover of Atg1 complex subunits at the pre-autophagosomal structure (PAS). Moreover, Atg1 recruitment by Atg8-PE self-regulates Atg8-PE levels in the growing autophagosomal membrane by phosphorylating and thus inhibiting the Atg8-specific E2 and E3. Our work uncovers the molecular basis for positive and negative feedback imposed by Atg1 and how opposing phosphorylation and dephosphorylation events underlie the spatiotemporal regulation of autophagy.


Assuntos
Autofagossomos/enzimologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagossomos/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Fosforilação , Proteínas Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo
2.
EMBO J ; 42(17): e112847, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37365982

RESUMO

The paralogs CUL4A and CUL4B assemble cullin-RING E3 ubiquitin ligase (CRL) complexes regulating multiple chromatin-associated cellular functions. Although they are structurally similar, we found that the unique N-terminal extension of CUL4B is heavily phosphorylated during mitosis, and the phosphorylation pattern is perturbed in the CUL4B-P50L mutation causing X-linked intellectual disability (XLID). Phenotypic characterization and mutational analysis revealed that CUL4B phosphorylation is required for efficient progression through mitosis, controlling spindle positioning and cortical tension. While CUL4B phosphorylation triggers chromatin exclusion, it promotes binding to actin regulators and to two previously unrecognized CUL4B-specific substrate receptors (DCAFs), LIS1 and WDR1. Indeed, co-immunoprecipitation experiments and biochemical analysis revealed that LIS1 and WDR1 interact with DDB1, and their binding is enhanced by the phosphorylated N-terminal domain of CUL4B. Finally, a human forebrain organoid model demonstrated that CUL4B is required to develop stable ventricular structures that correlate with onset of forebrain differentiation. Together, our study uncovers previously unrecognized DCAFs relevant for mitosis and brain development that specifically bind CUL4B, but not the CUL4B-P50L patient mutant, by a phosphorylation-dependent mechanism.


Assuntos
Mitose , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Cromatina , Encéfalo/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
3.
Nat Rev Mol Cell Biol ; 16(1): 30-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25531226

RESUMO

NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin-RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here, we re-evaluate studies of non-cullin targets of NEDD8 in light of the current understanding of the neddylation pathway, and suggest criteria for identifying genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights.


Assuntos
Proteínas Culina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Ubiquitinas/metabolismo , Animais , Proteínas Culina/genética , Humanos , Proteína NEDD8 , Ubiquitinas/genética
4.
EMBO J ; 41(7): e109998, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188676

RESUMO

The organelles of eukaryotic cells differ in their membrane lipid composition. This heterogeneity is achieved by the localization of lipid synthesizing and modifying enzymes to specific compartments, as well as by intracellular lipid transport that utilizes vesicular and non-vesicular routes to ferry lipids from their place of synthesis to their destination. For instance, the major and essential phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), can be produced by multiple pathways and, in the case of PE, also at multiple locations. However, the molecular components that underlie lipid homeostasis as well as the routes allowing their distribution remain unclear. Here, we present an approach in which we simplify and rewire yeast phospholipid synthesis by redirecting PE and PC synthesis reactions to distinct subcellular locations using chimeric enzymes fused to specific organelle targeting motifs. In rewired conditions, viability is expected to depend on homeostatic adaptation to the ensuing lipostatic perturbations and on efficient interorganelle lipid transport. We therefore performed genetic screens to identify factors involved in both of these processes. Among the candidates identified, we find genes linked to transcriptional regulation of lipid homeostasis, lipid metabolism, and transport. In particular, we identify a requirement for Csf1-an uncharacterized protein harboring a Chorein-N lipid transport motif-for survival under certain rewired conditions as well as lipidomic adaptation to cold, implicating Csf1 in interorganelle lipid transport and homeostatic adaptation.


Assuntos
Lipídeos de Membrana , Organelas , Transporte Biológico , Homeostase , Metabolismo dos Lipídeos/genética , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Organelas/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo
5.
Mol Syst Biol ; 19(4): e11024, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36896621

RESUMO

While several computational methods have been developed to predict the functional relevance of phosphorylation sites, experimental analysis of the interdependency between protein phosphorylation and Protein-Protein Interactions (PPIs) remains challenging. Here, we describe an experimental strategy to establish interdependencies between protein phosphorylation and complex formation. This strategy is based on three main steps: (i) systematically charting the phosphorylation landscape of a target protein; (ii) assigning distinct proteoforms of the target protein to different protein complexes by native complex separation (AP-BNPAGE) and protein correlation profiling; and (iii) analyzing proteoforms and complexes in cells lacking regulators of the target protein. We applied this strategy to YAP1, a transcriptional co-activator for the control of organ size and tissue homeostasis that is highly phosphorylated and among the most connected proteins in human cells. We identified multiple YAP1 phosphosites associated with distinct complexes and inferred how both are controlled by Hippo pathway members. We detected a PTPN14/LATS1/YAP1 complex and suggest a model how PTPN14 inhibits YAP1 via augmenting WW domain-dependent complex formation and phosphorylation by LATS1/2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Humanos , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
6.
Mol Cell ; 62(4): 627-35, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27203182

RESUMO

To maintain genome integrity and epigenetic information, mammalian cells must carefully coordinate the supply and deposition of histones during DNA replication. Here we report that the CUL4 E3 ubiquitin ligase complex CRL4(WDR23) directly regulates the stem-loop binding protein (SLBP), which orchestrates the life cycle of histone transcripts including their stability, maturation, and translation. Lack of CRL4(WDR23) activity is characterized by depletion of histones resulting in inhibited DNA replication and a severe slowdown of growth in human cells. Detailed analysis revealed that CRL4(WDR23) is required for efficient histone mRNA 3' end processing to produce mature histone mRNAs for translation. CRL4(WDR23) binds and ubiquitylates SLBP in vitro and in vivo, and this modification activates SLBP function in histone mRNA 3' end processing without affecting its protein levels. Together, these results establish a mechanism by which CUL4 regulates DNA replication and possible additional chromatin transactions by controlling the concerted expression of core histones.


Assuntos
Proteínas de Transporte/metabolismo , Replicação do DNA , DNA/biossíntese , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Fase S , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas de Transporte/genética , Montagem e Desmontagem da Cromatina , DNA/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Processamento de Terminações 3' de RNA , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Fatores de Poliadenilação e Clivagem de mRNA/genética
7.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074750

RESUMO

The oxidative coupling of methane to ethylene using gaseous disulfur (2CH4 + S2 → C2H4 + 2H2S) as an oxidant (SOCM) proceeds with promising selectivity. Here, we report detailed experimental and theoretical studies that examine the mechanism for the conversion of CH4 to C2H4 over an Fe3O4-derived FeS2 catalyst achieving a promising ethylene selectivity of 33%. We compare and contrast these results with those for the highly exothermic oxidative coupling of methane (OCM) using O2 (2CH4 + O2 → C2H4 + 2H2O). SOCM kinetic/mechanistic analysis, along with density functional theory results, indicate that ethylene is produced as a primary product of methane activation, proceeding predominantly via CH2 coupling over dimeric S-S moieties that bridge Fe surface sites, and to a lesser degree, on heavily sulfided mononuclear sites. In contrast to and unlike OCM, the overoxidized CS2 by-product forms predominantly via CH4 oxidation, rather than from C2 products, through a series of C-H activation and S-addition steps at adsorbed sulfur sites on the FeS2 surface. The experimental rates for methane conversion are first order in both CH4 and S2, consistent with the involvement of two S sites in the rate-determining methane C-H activation step, with a CD4/CH4 kinetic isotope effect of 1.78. The experimental apparent activation energy for methane conversion is 66 ± 8 kJ/mol, significantly lower than for CH4 oxidative coupling with O2 The computed methane activation barrier, rate orders, and kinetic isotope values are consistent with experiment. All evidence indicates that SOCM proceeds via a very different pathway than that of OCM.

8.
EMBO J ; 38(15): e101433, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368600

RESUMO

Cellular homeostasis requires the ubiquitin-dependent degradation of membrane proteins. This was assumed to be mediated exclusively either by endoplasmic reticulum-associated degradation (ERAD) or by endosomal sorting complexes required for transport (ESCRT)-dependent lysosomal degradation. We identified in Saccharomyces cerevisiae an additional pathway that selectively extracts membrane proteins at Golgi and endosomes for degradation by cytosolic proteasomes. One endogenous substrate of this endosome and Golgi-associated degradation pathway (EGAD) is the ER-resident membrane protein Orm2, a negative regulator of sphingolipid biosynthesis. Orm2 degradation is initiated by phosphorylation, which triggers its ER export. Once on Golgi and endosomes, Orm2 is poly-ubiquitinated by the membrane-embedded "Defective in SREBP cleavage" (Dsc) ubiquitin ligase complex. Cdc48/VCP then extracts ubiquitinated Orm2 from membranes, which is tightly coupled to the proteasomal degradation of Orm2. Thereby, EGAD prevents the accumulation of Orm2 at the ER and in post-ER compartments and promotes the controlled de-repression of sphingolipid biosynthesis. Thus, the selective degradation of membrane proteins by EGAD contributes to proteostasis and lipid homeostasis in eukaryotic cells.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Proteína com Valosina/metabolismo , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Complexo de Golgi/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/química
9.
EMBO Rep ; 22(11): e52981, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34647674

RESUMO

The human GID (hGID) complex is a conserved E3 ubiquitin ligase regulating diverse biological processes, including glucose metabolism and cell cycle progression. However, the biochemical function and substrate recognition of the multi-subunit complex remain poorly understood. Using biochemical assays, cross-linking mass spectrometry, and cryo-electron microscopy, we show that hGID engages two distinct modules for substrate recruitment, dependent on either WDR26 or GID4. WDR26 and RanBP9 cooperate to ubiquitinate HBP1 in vitro, while GID4 is dispensable for this reaction. In contrast, GID4 functions as an adaptor for the substrate ZMYND19, which surprisingly lacks a Pro/N-end degron. GID4 substrate binding and ligase activity is regulated by ARMC8α, while the shorter ARMC8ß isoform assembles into a stable hGID complex that is unable to recruit GID4. Cryo-EM reconstructions of these hGID complexes reveal the localization of WDR26 within a ring-like, tetrameric architecture and suggest that GID4 and WDR26/Gid7 utilize different, non-overlapping binding sites. Together, these data advance our mechanistic understanding of how the hGID complex recruits cognate substrates and provides insights into the regulation of its E3 ligase activity.


Assuntos
Proteínas de Grupo de Alta Mobilidade , Ubiquitina-Proteína Ligases , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
Mol Cell ; 55(3): 409-21, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25002144

RESUMO

Regulation of cell growth by nutrients is governed by highly conserved signaling pathways, yet mechanisms of nutrient sensing are still poorly understood. In yeast, glucose activates both the Ras/PKA pathway and TORC1, which coordinately regulate growth through enhancing translation and ribosome biogenesis and suppressing autophagy. Here, we show that cytosolic pH acts as a cellular signal to activate Ras and TORC1 in response to glucose availability. We demonstrate that cytosolic pH is sensitive to the quality and quantity of the available carbon source (C-source). Interestingly, Ras/PKA and TORC1 are both activated through the vacuolar ATPase (V-ATPase), which was previously identified as a sensor for cytosolic pH in vivo. V-ATPase interacts with two distinct GTPases, Arf1 and Gtr1, which are required for Ras and TORC1 activation, respectively. Together, these data provide a molecular mechanism for how cytosolic pH links C-source availability to the activity of signaling networks promoting cell growth.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Glucose/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Fator 1 de Ribosilação do ADP/fisiologia , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas ras/metabolismo
11.
Mol Cell ; 53(3): 471-83, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24440502

RESUMO

Bulk degradation of cytoplasmic material is mediated by a highly conserved intracellular trafficking pathway termed autophagy. This pathway is characterized by the formation of double-membrane vesicles termed autophagosomes engulfing the substrate and transporting it to the vacuole/lysosome for breakdown and recycling. The Atg1/ULK1 kinase is essential for this process; however, little is known about its targets and the means by which it controls autophagy. Here we have screened for Atg1 kinase substrates using consensus peptide arrays and identified three components of the autophagy machinery. The multimembrane-spanning protein Atg9 is a direct target of this kinase essential for autophagy. Phosphorylated Atg9 is then required for the efficient recruitment of Atg8 and Atg18 to the site of autophagosome formation and subsequent expansion of the isolation membrane, a prerequisite for a functioning autophagy pathway. These findings show that the Atg1 kinase acts early in autophagy by regulating the outgrowth of autophagosomal membranes.


Assuntos
Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Sequência de Aminoácidos , Aminopeptidases/química , Aminopeptidases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Relacionadas à Autofagia , Sítios de Ligação , Sequência Consenso , Membranas Intracelulares/metabolismo , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Fagossomos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
12.
Nature ; 528(7582): 422-6, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26649820

RESUMO

DNA repair by homologous recombination is highly suppressed in G1 cells to ensure that mitotic recombination occurs solely between sister chromatids. Although many homologous recombination factors are cell-cycle regulated, the identity of the events that are both necessary and sufficient to suppress recombination in G1 cells is unknown. Here we report that the cell cycle controls the interaction of BRCA1 with PALB2-BRCA2 to constrain BRCA2 function to the S/G2 phases in human cells. We found that the BRCA1-interaction site on PALB2 is targeted by an E3 ubiquitin ligase composed of KEAP1, a PALB2-interacting protein, in complex with cullin-3 (CUL3)-RBX1 (ref. 6). PALB2 ubiquitylation suppresses its interaction with BRCA1 and is counteracted by the deubiquitylase USP11, which is itself under cell cycle control. Restoration of the BRCA1-PALB2 interaction combined with the activation of DNA-end resection is sufficient to induce homologous recombination in G1, as measured by RAD51 recruitment, unscheduled DNA synthesis and a CRISPR-Cas9-based gene-targeting assay. We conclude that the mechanism prohibiting homologous recombination in G1 minimally consists of the suppression of DNA-end resection coupled with a multi-step block of the recruitment of BRCA2 to DNA damage sites that involves the inhibition of BRCA1-PALB2-BRCA2 complex assembly. We speculate that the ability to induce homologous recombination in G1 cells with defined factors could spur the development of gene-targeting applications in non-dividing cells.


Assuntos
Fase G1 , Recombinação Homóloga , Sequência de Aminoácidos , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas Culina/metabolismo , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi , Fase G2 , Marcação de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Rad51 Recombinase/metabolismo , Fase S , Tioléster Hidrolases/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
EMBO J ; 35(23): 2584-2601, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27797818

RESUMO

Homologous recombination (HR) is a key pathway that repairs DNA double-strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L-TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L-TONSL associates with replication protein A (RPA)-coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR-mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L-TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51-ssDNA nucleoprotein filament formation and RAD51-dependent strand exchange activity in vitro Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L-TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR-mediated restart in vivo.


Assuntos
Proteínas de Ligação a DNA/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Recombinação Genética , Dano ao DNA , Reparo do DNA , Replicação do DNA , Células HeLa , Humanos , Mapeamento de Interação de Proteínas , Multimerização Proteica
14.
Proc Natl Acad Sci U S A ; 114(51): 13471-13476, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29196524

RESUMO

Cells experience compressive stress while growing in limited space or migrating through narrow constrictions. To survive such stress, cells reprogram their intracellular organization to acquire appropriate mechanical properties. However, the mechanosensors and downstream signaling networks mediating these changes remain largely unknown. Here, we have established a microfluidic platform to specifically trigger compressive stress, and to quantitatively monitor single-cell responses of budding yeast in situ. We found that yeast senses compressive stress via the cell surface protein Mid2 and the calcium channel proteins Mid1 and Cch1, which then activate the Pkc1/Mpk1 MAP kinase pathway and calcium signaling, respectively. Genetic analysis revealed that these pathways work in parallel to mediate cell survival. Mid2 contains a short intracellular tail and a serine-threonine-rich extracellular domain with spring-like properties, and both domains are required for mechanosignaling. Mid2-dependent spatial activation of the Pkc1/Mpk1 pathway depolarizes the actin cytoskeleton in budding or shmooing cells, thereby antagonizing polarized growth to protect cells under compressive stress conditions. Together, these results identify a conserved signaling network responding to compressive mechanical stress, which, in higher eukaryotes, may ensure cell survival in confined environments.


Assuntos
Calcineurina/metabolismo , Canais de Cálcio/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Mecânico , Citoesqueleto de Actina/metabolismo , Calcineurina/genética , Canais de Cálcio/genética , Sinalização do Cálcio , Sobrevivência Celular , Parede Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Mecanotransdução Celular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microfluídica/instrumentação , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
J Biol Chem ; 293(29): 11424-11432, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29853641

RESUMO

Cells form stress granules (SGs) upon stress stimuli to protect sensitive proteins and RNA from degradation. In the yeast Saccharomyces cerevisiae, specific stresses such as nutrient starvation and heat-shock trigger recruitment of the yeast pyruvate kinase Cdc19 into SGs. This RNA-binding protein was shown to form amyloid-like aggregates that are physiologically reversible and essential for cell cycle restart after stress. Cellular Cdc19 exists in an equilibrium between a homotetramer and monomer state. Here, we show that Cdc19 aggregation in vitro is governed by protein quaternary structure, and we investigate the physical-chemical basis of Cdc19's assembly properties. Equilibrium shift toward the monomer state exposes a hydrophobic low-complexity region (LCR), which is prone to induce intermolecular interactions with surrounding proteins. We further demonstrate that hydrophobic/hydrophilic interfaces can trigger Cdc19 aggregation in vitro Moreover, we performed in vitro biophysical analyses to compare Cdc19 aggregates with fibrils produced by two known dysfunctional amyloidogenic peptides. We show that the Cdc19 aggregates share several structural features with pathological amyloids formed by human insulin and the Alzheimer's disease-associated Aß42 peptide, particularly secondary ß-sheet structure, thermodynamic stability, and staining by the thioflavin T dye. However, Cdc19 aggregates could not seed aggregation. These results indicate that Cdc19 adopts an amyloid-like structure in vitro that is regulated by the exposure of a hydrophobic LCR in its monomeric form. Together, our results highlight striking structural similarities between functional and dysfunctional amyloids and reveal the crucial role of hydrophobic/hydrophilic interfaces in regulating Cdc19 aggregation.


Assuntos
Amiloide/metabolismo , Proteínas de Ciclo Celular/metabolismo , Piruvato Quinase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestrutura , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insulina/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos , Estrutura Quaternária de Proteína , Piruvato Quinase/química , Piruvato Quinase/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
16.
Rheumatology (Oxford) ; 58(9): 1585-1596, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877773

RESUMO

OBJECTIVES: We aimed to assess the safety and immunogenicity of a diphtheria/tetanus vaccine booster dose in three different patient groups with rheumatic diseases on a variety of immunosuppressive/immunomodulatory medications compared with healthy controls (HCs). METHODS: We conducted a multi-centre prospective cohort study in Switzerland. We enrolled patients with RA, axial SpA/PsA, vasculitis (Behçet's disease, ANCA-associated vasculitis) and HCs. Diphtheria/tetanus vaccination was administered according to the Swiss vaccination recommendations. Blood samples were drawn before vaccination, and 1 month and 3 months afterwards. Antibody concentrations against vaccine antigens were measured by ELISA. Immunogenicity was compared between patient and medication groups. A mixed model was applied for multivariate analysis. Missing data were dealt with using multiple imputation. RESULTS: Between January 2014 and December 2015, we enrolled 284 patients with rheumatic diseases (131 RA, 114 SpA/PsA, 39 vasculitis) and 253 HCs. Of the patients, 89% were on immunosuppressive/immunomodulatory medication. Three months post-vaccination 100% of HCs vs 98% of patients were protected against tetanus and 84% vs 73% against diphtheria. HCs and SpA/PsA patients had significantly higher responses than RA and vasculitis patients. Assessing underlying diseases and medications in a multivariate model, rituximab was the only factor negatively influencing tetanus immunogenicity, whereas only MTX treatment had a negative influence on diphtheria antibody responses. No vaccine-related serious adverse events were recorded. CONCLUSION: Diphtheria/tetanus booster vaccination was safe. Tetanus vaccination was immunogenic; the diphtheria component was less immunogenic. Vaccine responses were blunted by rituximab and MTX. TRIAL REGISTRATION: ClinicalTrials.gov, http://clinicaltrials.gov, Identifier: NCT01947465.


Assuntos
Anticorpos Antibacterianos/biossíntese , Vacina contra Difteria e Tétano/efeitos adversos , Imunogenicidade da Vacina/efeitos dos fármacos , Doenças Reumáticas/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Clostridium tetani/imunologia , Corynebacterium diphtheriae/imunologia , Difteria/prevenção & controle , Vacina contra Difteria e Tétano/imunologia , Feminino , Humanos , Imunização Secundária , Imunogenicidade da Vacina/imunologia , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doenças Reumáticas/tratamento farmacológico , Tétano/prevenção & controle , Vacinação , Adulto Jovem
17.
EMBO Rep ; 18(5): 765-780, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28330855

RESUMO

Deconjugation of the Atg8/LC3 protein family members from phosphatidylethanolamine (PE) by Atg4 proteases is essential for autophagy progression, but how this event is regulated remains to be understood. Here, we show that yeast Atg4 is recruited onto autophagosomal membranes by direct binding to Atg8 via two evolutionarily conserved Atg8 recognition sites, a classical LC3-interacting region (LIR) at the C-terminus of the protein and a novel motif at the N-terminus. Although both sites are important for Atg4-Atg8 interaction in vivo, only the new N-terminal motif, close to the catalytic center, plays a key role in Atg4 recruitment to autophagosomal membranes and specific Atg8 deconjugation. We thus propose a model where Atg4 activity on autophagosomal membranes depends on the cooperative action of at least two sites within Atg4, in which one functions as a constitutive Atg8 binding module, while the other has a preference toward PE-bound Atg8.


Assuntos
Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Membranas/química , Membranas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Fagossomos/metabolismo , Fosfatidiletanolaminas/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Mol Cell ; 43(3): 488-95, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816351

RESUMO

Cullin proteins are scaffolds for the assembly of multisubunit ubiquitin ligases, which ubiquitylate a large number of proteins involved in widely varying cellular functions. Multiple mechanisms cooperate to regulate cullin activity, including neddylation of their C-terminal domain. Interestingly, we found that the yeast Cul4-type cullin Rtt101 is not only neddylated but also ubiquitylated, and both modifications promote Rtt101 function in vivo. Surprisingly, proper modification of Rtt101 neither correlated with catalytic activity of the RING domain of Hrt1 nor required the Nedd8 ligase Dcn1. Instead, ubiquitylation of Rtt101 was dependent on the ubiquitin-conjugating enzyme Ubc4, while efficient neddylation involves the RING domain protein Tfb3, a subunit of the transcription factor TFIIH. Tfb3 also controls Cul3 neddylation and activity in vivo, and physically interacts with Ubc4 and the Nedd8-conjugating enzyme Ubc12 and the Hrt1/Rtt101 complex. Together, these results suggest that the conserved RING domain protein Tfb3 controls activation of a subset of cullins.


Assuntos
Proteínas Culina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/fisiologia , Fatores de Transcrição TFII/fisiologia , Ubiquitinas/metabolismo , Mutação , Proteínas Ligases SKP Culina F-Box/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
19.
Bioessays ; 39(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28556309

RESUMO

Detecting and interpreting extracellular spatial signals is essential for cellular orientation within complex environments, such as during directed cell migration or growth in multicellular development. Although the molecular understanding of how cells read spatial signals like chemical gradients is still lacking, recent work has revealed that stochastic processes at different temporal and spatial scales are at the core of this gradient sensing process in a wide range of eukaryotes. Fast biochemical reactions like those underlying GTPase activity dynamics form a functional module together with slower cell morphological changes driven by membrane remodelling. This biochemical-morphological module explores the environment by stochastic local concentration sampling to determine the source of the gradient signal, enabling efficient signal detection and interpretation before polarised growth or migration towards the gradient source is initiated. Here we review recent data describing local sampling and propose a model of local fast and slow feedback counteracted by gradient-dependent substrate limitation to be at the core of gradient sensing by local sampling.


Assuntos
Transdução de Sinais/fisiologia , Movimento Celular/fisiologia , Eucariotos/fisiologia , Modelos Biológicos , Processos Estocásticos
20.
PLoS Genet ; 12(2): e1005843, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26849847

RESUMO

Faithful DNA replication and repair requires the activity of cullin 4-based E3 ubiquitin ligases (CRL4), but the underlying mechanisms remain poorly understood. The budding yeast Cul4 homologue, Rtt101, in complex with the linker Mms1 and the putative substrate adaptor Mms22 promotes progression of replication forks through damaged DNA. Here we characterized the interactome of Mms22 and found that the Rtt101(Mms22) ligase associates with the replisome progression complex during S-phase via the amino-terminal WD40 domain of Ctf4. Moreover, genetic screening for suppressors of the genotoxic sensitivity of rtt101Δ cells identified a cluster of replication proteins, among them a component of the fork protection complex, Mrc1. In contrast to rtt101Δ and mms22Δ cells, mrc1Δ rtt101Δ and mrc1Δ mms22Δ double mutants complete DNA replication upon replication stress by facilitating the repair/restart of stalled replication forks using a Rad52-dependent mechanism. Our results suggest that the Rtt101(Mms22) E3 ligase does not induce Mrc1 degradation, but specifically counteracts Mrc1's replicative function, possibly by modulating its interaction with the CMG (Cdc45-MCM-GINS) complex at stalled forks.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , Complexos Multienzimáticos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Proteínas Culina/química , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Genes Fúngicos , Recombinação Homóloga/genética , Mutação/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA