Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 82(3): 570-584.e8, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951965

RESUMO

The hexameric Cdc48 ATPase (p97 or VCP in mammals) cooperates with its cofactor Ufd1/Npl4 to extract polyubiquitinated proteins from membranes or macromolecular complexes for degradation by the proteasome. Here, we clarify how the Cdc48 complex unfolds its substrates and translocates polypeptides with branchpoints. The Cdc48 complex recognizes primarily polyubiquitin chains rather than the attached substrate. Cdc48 and Ufd1/Npl4 cooperatively bind the polyubiquitin chain, resulting in the unfolding of one ubiquitin molecule (initiator). Next, the ATPase pulls on the initiator ubiquitin and moves all ubiquitin molecules linked to its C terminus through the central pore of the hexameric double ring, causing transient ubiquitin unfolding. When the ATPase reaches the isopeptide bond of the substrate, it can translocate and unfold both N- and C-terminal segments. Ubiquitins linked to the branchpoint of the initiator dissociate from Ufd1/Npl4 and move outside the central pore, resulting in the release of unfolded, polyubiquitinated substrate from Cdc48.


Assuntos
Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Ubiquitinadas/metabolismo , Proteína com Valosina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte Proteico , Desdobramento de Proteína , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Ubiquitinadas/genética , Ubiquitinação , Proteína com Valosina/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Anal Chem ; 94(28): 10142-10150, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35796687

RESUMO

During the analysis steps of hydrogen-deuterium exchange (HDX) mass spectrometry (MS), there is an unavoidable loss of deuterons, or back-exchange. Understanding back-exchange is necessary to correct for loss during analysis, to calculate the absolute amount of exchange, and to ensure that deuterium recovery is as high as possible during liquid chromatography (LC)-MS. Back-exchange can be measured and corrected for using a maximally deuterated species (here called maxD), in which the protein is deuterated at positions and analyzed with the same buffer components, %D2O, quenching conditions, and LC-MS parameters used during the analysis of other labeled samples. Here, we describe a robust and broadly applicable protocol, using denaturation followed by deuteration, to prepare a maxD control sample in ∼40 min for nonmembrane proteins. The protocol was evaluated with a number of proteins that varied in both size and folded structure. The relative fractional uptake and level of back-exchange with this protocol were both equivalent to those obtained with earlier protocols that either require much more time or require isolation of peptic peptides prior to deuteration. Placing strong denaturation first in the protocol allowed for maximum deuteration in a short time (∼10 min) with equal or more deuteration found in other methods. The absence of high temperatures and low pH during the deuteration step limited protein aggregation. This high-performance, fast, and easy-to-perform protocol should enhance routine preparation of maxD controls.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Deutério/química , Medição da Troca de Deutério/métodos , Hidrogênio/química , Espectrometria de Massas , Proteínas/química
3.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576228

RESUMO

Human Angiogenin (hANG, or ANG, 14.1 kDa) promotes vessel formation and is also called RNase 5 because it is included in the pancreatic-type ribonuclease (pt-RNase) super-family. Although low, its ribonucleolytic activity is crucial for angiogenesis in tumor tissues but also in the physiological development of the Central Nervous System (CNS) neuronal progenitors. Nevertheless, some ANG variants are involved in both neurodegenerative Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Notably, some pt-RNases acquire new biological functions upon oligomerization. Considering neurodegenerative diseases correlation with massive protein aggregation, we analyzed the aggregation propensity of ANG and of three of its pathogenic variants, namely H13A, S28N, and R121C. We found no massive aggregation, but wt-ANG, as well as S28N and R121C variants, can form an enzymatically active dimer, which is called ANG-D. By contrast, the enzymatically inactive H13A-ANG does not dimerize. Corroborated by a specific cross-linking analysis and by the behavior of H13A-ANG that in turn lacks one of the two His active site residues necessary for pt-RNases to self-associate through the three-dimensional domain swapping (3D-DS), we demonstrate that ANG actually dimerizes through 3D-DS. Then, we deduce by size exclusion chromatography (SEC) and modeling that ANG-D forms through the swapping of ANG N-termini. In light of these novelties, we can expect future investigations to unveil other ANG determinants possibly related with the onset and/or development of neurodegenerative pathologies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Doença de Parkinson/genética , Ribonuclease Pancreático/química , Esclerose Lateral Amiotrófica/metabolismo , Cromatografia , Cristalografia por Raios X , Dimerização , Variação Genética , Humanos , Modelos Moleculares , Mutação , Doença de Parkinson/metabolismo , Fosforilação , Conformação Proteica , Domínios Proteicos , Ribonuclease Pancreático/metabolismo , Ribonucleases/metabolismo , Sulfonas/química
4.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803867

RESUMO

Transient receptor potential channels-vanilloid receptor 1 (TRPV1) regulates thermotaxis in sperm-oriented motility. We investigated the role of membrane cholesterol (Chol) on TRPV1-mediated human sperm migration. Semen samples were obtained from five normozoospemic healthy volunteers. Sperm membrane Chol content, quantified by liquid chromatography-mass spectrometry, was modified by incubating cells with 2-hydroxypropyl-ß-cyclodextrin (CD) or the complex between CD and Chol (CD:Chol). The effect on sperm migration on a 10 µM capsaicin gradient (CPS), a TRPV1 agonist, was then investigated. Motility parameters were evaluated by Sperm Class Analyser. Intracellular calcium concentration and acrosome reaction were measured by staining with calcium orange and FITC-conjugated anti-CD46 antibody, respectively. TRPV1-Chol interaction was modelled by computational molecular-modelling (MM). CD and CD:Chol, respectively, reduced and increased membrane Chol content in a dose-dependent manner, resulting in a dose-dependent increase and reduction of sperm migration in a CPS gradient. MM confirmed a specific interaction of Chol with a TRPV1 domain that appeared precluded to the Chol epimer epicholesterol (Epi-Chol). Accordingly, CD:Epi-Chol was significantly less efficient than CD:Chol, in reducing sperm migration under CPS gradient. Chol inhibits TRPV1-mediated sperm function by directly interacting with a consensus sequence of the receptor.


Assuntos
Colesterol/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Canais de Cátion TRPV/metabolismo , Adulto , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ciclodextrinas/farmacologia , Humanos , Masculino , Modelos Moleculares , Canais de Cátion TRPV/química
5.
J Biol Chem ; 292(37): 15161-15179, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684417

RESUMO

Blood coagulation is a finely regulated physiological process culminating with the factor Xa (FXa)-mediated conversion of the prothrombin (ProT) zymogen to active α-thrombin (αT). In the prothrombinase complex on the platelet surface, FXa cleaves ProT at Arg-271, generating the inactive precursor prethrombin-2 (Pre2), which is further attacked at Arg-320-Ile-321 to yield mature αT. Whereas the mechanism of physiological ProT activation has been elucidated in great detail, little is known about the role of bacterial proteases, possibly released in the bloodstream during infection, in inducing blood coagulation by direct proteolytic ProT activation. This knowledge gap is particularly concerning, as bacterial infections are frequently complicated by severe coagulopathies. Here, we show that addition of subtilisin (50 nm to 2 µm), a serine protease secreted by the non-pathogenic bacterium Bacillus subtilis, induces plasma clotting by proteolytically converting ProT into active σPre2, a nicked Pre2 derivative with a single cleaved Ala-470-Asn-471 bond. Notably, we found that this non-canonical cleavage at Ala-470-Asn-471 is instrumental for the onset of catalysis in σPre2, which was, however, reduced about 100-200-fold compared with αT. Of note, σPre2 could generate fibrin clots from fibrinogen, either in solution or in blood plasma, and could aggregate human platelets, either isolated or in whole blood. Our findings demonstrate that alternative cleavage of ProT by proteases, even by those secreted by non-virulent bacteria such as B. subtilis, can shift the delicate procoagulant-anticoagulant equilibrium toward thrombosis.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Coagulação Sanguínea , Modelos Moleculares , Agregação Plaquetária , Protrombina/agonistas , Subtilisina/metabolismo , Adulto , Proteínas de Bactérias/antagonistas & inibidores , Coagulação Sanguínea/efeitos dos fármacos , Domínio Catalítico , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise/efeitos dos fármacos , Protrombina/química , Protrombina/genética , Protrombina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Inibidores de Serina Proteinase/farmacologia , Especificidade por Substrato , Subtilisina/antagonistas & inibidores , Trombose/etiologia , Trombose/metabolismo
6.
Biotechnol Appl Biochem ; 65(1): 69-80, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29230873

RESUMO

The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin.


Assuntos
Aminoácidos/química , Hirudinas/química , Engenharia de Proteínas , Trombina/química , Aminoácidos/metabolismo , Hirudinas/metabolismo , Modelos Moleculares , Estrutura Molecular , Eletricidade Estática , Relação Estrutura-Atividade , Trombina/metabolismo
7.
Biochem J ; 473(24): 4629-4650, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27760842

RESUMO

ß2-Glycoprotein I (ß2GpI) is the major autoantigen in the antiphospholipid syndrome, a thrombotic autoimmune disease. Nonetheless, the physiological role of ß2GpI is still unclear. In a recent work, we have shown that ß2GpI selectively inhibits the procoagulant functions of human α-thrombin (αT; i.e. prolongs fibrin clotting time, tc, and inhibits αT-induced platelet aggregation) without affecting the unique anticoagulant activity of the protease, i.e. the proteolytic generation of the anticoagulant protein C (PC) from the PC zymogen, which interacts with αT exclusively at the protease catalytic site. Here, we used several different biochemical/biophysical techniques and molecular probes for mapping the binding sites in the αT-ß2GpI complex. Our results indicate that αT exploits the highly electropositive exosite-II, which is also responsible for anchoring αT on the platelet GpIbα (platelet receptor glycoprotein Ibα) receptor, for binding to a continuous negative region on ß2GpI structure, spanning domain IV and (part of) domain V, whereas the protease active site and exosite-I (i.e. the fibrinogen-binding site) remain accessible for substrate/ligand binding. Furthermore, we provided evidence that the apparent increase in tc, previously observed with ß2GpI, is more likely caused by alteration in the ensuing fibrin structure rather than by the inhibition of fibrinogen hydrolysis. Finally, we produced a theoretical docking model of αT-ß2GpI interaction, which was in agreement with the experimental results. Altogether, these findings help to understand how ß2GpI affects αT interactions and suggest that ß2GpI may function as a scavenger of αT for binding to the GpIbα receptor, thus impairing platelet aggregation while enabling normal cleavage of fibrinogen and PC.


Assuntos
Trombina/química , Trombina/metabolismo , beta 2-Glicoproteína I/química , beta 2-Glicoproteína I/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Difusão Dinâmica da Luz , Fibrina/química , Fibrina/metabolismo , Humanos , Cinética , Concentração Osmolar , Agregação Plaquetária/efeitos dos fármacos , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Trombina/farmacologia
9.
J Chromatogr A ; 1689: 463742, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586285

RESUMO

Reversed-phase peptide separation in hydrogen deuterium exchange (HDX) mass spectrometry (MS) must be done with conditions where the back exchange is the slowest possible, the so-called quench conditions of low pH and low temperature. To retain maximum deuterium, separation must also be done as quickly as possible. The low temperature (0 °C) of quench conditions complicates the separation and leads primarily to a reduction in separation quality and an increase in chromatographic backpressure. To improve the separation in HDX MS, one could use a longer gradient, smaller particles, a different separation mechanism (for example, capillary electrophoresis), or multi-dimensional separations such as combining ion mobility separation with reversed-phase separation. Another way to improve separations under HDX MS quench conditions is to use a higher flow rate where separation efficiency at 0 °C is more ideal. Higher flow rates, however, require chromatographic systems (both pumps and fittings) with higher backpressure limits. We tested what improvements could be realized with a commercial UPLC/UHPLC system capable of ∼20,000 psi backpressure. We found that a maximum flow rate of 225 µL/min (using a 1 × 50 mm column packed with 1.8 µm particles) was possible and that higher flow rate clearly led to higher peak capacity. HDX MS analysis of both simple and particularly complex samples improved, permitting both shorter separation time, if desired, and providing more deuterium recovery.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Deutério/química , Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Peptídeos/química , Hidrogênio/química
10.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778378

RESUMO

Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease whose understanding and treatment is complicated by vast numbers of patient-specific mutations. To address molecular origins of the disease, we explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. Hydrogen-deuterium exchange mass spectrometry analysis of local conformational dynamics in full-length recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation, and amyloidogenic sequence propensities using spectroscopic, electron microscopic and bioinformatics tools. The results were mapped on the atomic structures of native and fibrillary proteins. Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower. These and other differences suggest different major factors influencing amyloid formation. In 33*01-related amyloid LC, these factors involved mutation-induced destabilization of the native structure and probable stabilization of amyloid. The atypical behaviour of 39*01-related amyloid LC tracked back to increased dynamics/exposure of amyloidogenic segments in ßC' V and ßE V that could initiate aggregation, combined with decreased dynamics/exposure near the Cys23-Cys88 disulfide whose rearrangement is rate-limiting to amyloidogenesis. The results suggest distinct amyloidogenic pathways for closely related LCs and point to the antigen-binding, complementarity-determining regions CDR1 and CDR3, which are linked via the conserved internal disulfide, as key factors in amyloid formation by various LCs.

11.
Amyloid ; 30(4): 364-378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37216473

RESUMO

BACKGROUND: Immunoglobulin light chain (LC) amyloidosis is a life-threatening disease complicated by vast numbers of patient-specific mutations. We explored 14 patient-derived and engineered proteins related to κ1-family germline genes IGKVLD-33*01 and IGKVLD-39*01. METHODS: Hydrogen-deuterium exchange mass spectrometry analysis of conformational dynamics in recombinant LCs and their fragments was integrated with studies of thermal stability, proteolytic susceptibility, amyloid formation and amyloidogenic sequence propensity. The results were mapped on the structures of native and fibrillary proteins. RESULTS: Proteins from two κ1 subfamilies showed unexpected differences. Compared to their germline counterparts, amyloid LC related to IGKVLD-33*01 was less stable and formed amyloid faster, whereas amyloid LC related to IGKVLD-39*01 had similar stability and formed amyloid slower, suggesting different major factors influencing amyloidogenesis. In 33*01-related amyloid LC, these factors involved destabilization of the native structure and probable stabilization of amyloid. The atypical behavior of 39*01-related amyloid LC stemmed from increased dynamics/exposure of amyloidogenic segments in ßC'V and ßEV that could initiate aggregation and decreased dynamics/exposure near the Cys23-Cys88 disulfide. CONCLUSIONS: The results suggest distinct amyloidogenic pathways for closely related LCs and point to the complementarity-defining regions CDR1 and CDR3, linked via the conserved internal disulfide, as key factors in amyloid formation.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Regiões Determinantes de Complementaridade/genética , Amiloidose/genética , Amiloidose/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas , Dissulfetos
12.
Sci Rep ; 12(1): 9880, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701444

RESUMO

α-Synuclein (αSyn) is a small disordered protein, highly conserved in vertebrates and involved in the pathogenesis of Parkinson's disease (PD). Indeed, αSyn amyloid aggregates are present in the brain of patients with PD. Although the pathogenic role of αSyn is widely accepted, the physiological function of this protein remains elusive. Beyond the central nervous system, αSyn is expressed in hematopoietic tissue and blood, where platelets are a major cellular host of αSyn. Platelets play a key role in hemostasis and are potently activated by thrombin (αT) through the cleavage of protease-activated receptors. Furthermore, both αT and αSyn could be found in the same spatial environment, i.e. the platelet membrane, as αT binds to and activates platelets that can release αSyn from α-granules and microvesicles. Here, we investigated the possibility that exogenous αSyn could interfere with platelet activation induced by different agonists in vitro. Data obtained from distinct experimental techniques (i.e. multiple electrode aggregometry, rotational thromboelastometry, immunofluorescence microscopy, surface plasmon resonance, and steady-state fluorescence spectroscopy) on whole blood and platelet-rich plasma indicate that exogenous αSyn has mild platelet antiaggregating properties in vitro, acting as a negative regulator of αT-mediated platelet activation by preferentially inhibiting P-selectin expression on platelet surface. We have also shown that both exogenous and endogenous (i.e. cytoplasmic) αSyn preferentially bind to the outer surface of activated platelets. Starting from these findings, a coherent model of the antiplatelet function of αSyn is proposed.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Doença de Parkinson/metabolismo , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Trombina/farmacologia , alfa-Sinucleína/metabolismo
13.
Biomedicines ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35052783

RESUMO

Homo- and heterophilic binding mediated by the immunoglobulin (Ig)-like repeats of cell adhesion molecules play a pivotal role in cell-cell and cell-extracellular matrix interactions. L1CAM is crucial to neuronal differentiation, in both mature and developing nervous systems, and several studies suggest that its functional interactions are mainly mediated by Ig2-Ig2 binding. X-linked mutations in the human L1CAM gene are summarized as L1 diseases, including the most diagnosed CRASH neurodevelopmental syndrome. In silico simulations provided a molecular rationale for CRASH phenotypes resulting from mutations I179S and R184Q in the homophilic binding region of Ig2. A synthetic peptide reproducing such region could both mimic the neuritogenic capacity of L1CAM and rescue neuritogenesis in a cellular model of the CRASH syndrome, where the full L1CAM ectodomain proved ineffective. Presented functional evidence opens the route to the use of L1CAM-derived peptides as biotechnological and therapeutic tools.

14.
J Mol Biol ; 433(24): 167310, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34678302

RESUMO

Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.


Assuntos
Amiloide/metabolismo , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Mutação Puntual , Substituição de Aminoácidos , Sequência Conservada , Humanos , Conformação Proteica
15.
Comput Struct Biotechnol J ; 19: 5622-5636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712402

RESUMO

The discovery of conserved protein motifs can, in turn, unveil important regulatory signals, and when properly designed, synthetic peptides derived from such motifs can be used as biomimetics for biotechnological and therapeutic purposes. We report here that specific Ig-like repeats from the extracellular domains of neuronal Cell Adhesion Molecules share a highly conserved Neurite Outgrowth and Guidance (NOG) motif, which mediates homo- and heterophilic interactions crucial in neural development and repair. Synthetic peptides derived from the NOG motif of such proteins can boost neuritogenesis, and this potential is also retained by peptides with recombinant sequences, when fitting the NOG sequence pattern. The NOG motif discovery not only provides one more tile to the complex puzzle of neuritogenesis, but also opens the route to new neural regeneration strategies via a tunable biomimetic toolbox.

16.
ACS Omega ; 5(8): 4293-4301, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149259

RESUMO

The eye lens is mainly composed of the highly ordered water-soluble (WS) proteins named crystallins. The aggregation and insolubilization of these proteins lead to progressive lens opacification until cataract onset. Although this is a well-known disease, the mechanism of eye lens protein aggregation is not well understood; however, one of the recognized causes of proteins modification is related to the exposure to UV light. For this reason, the spectroscopic properties of WS lens proteins and their stability to UV irradiation have been evaluated by different biophysical methods including synchrotron radiation circular dichroism, fluorescence, and circular dichroism spectroscopies. Moreover, dynamic light scattering, gel electrophoresis, transmission electron microscopy, and protein digestion followed by tandem LC-MS/MS analysis were used to study the morphological and structural changes in protein aggregates induced by exposure to UV light. Our results clearly indicated that the exposure to UV radiation modified the protein conformation, inducing a loss of ordered structure and aggregation. Furthermore, we confirmed that these changes were attributable to the generation of reactive oxygen species due to the irradiation of the protein sample. This approach, involving the photodenaturation of proteins, provides a benchmark in high-throughput screening of small molecules suitable to prevent protein denaturation and aggregation.

17.
Commun Biol ; 3(1): 764, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311636

RESUMO

Aggregation of human wild-type transthyretin (hTTR), a homo-tetrameric plasma protein, leads to acquired senile systemic amyloidosis (SSA), recently recognised as a major cause of cardiomyopathies in 1-3% older adults. Fragmented hTTR is the standard composition of amyloid deposits in SSA, but the protease(s) responsible for amyloidogenic fragments generation in vivo is(are) still elusive. Here, we show that subtilisin secreted from Bacillus subtilis, a gut microbiota commensal bacterium, translocates across a simulated intestinal epithelium and cleaves hTTR both in solution and human plasma, generating the amyloidogenic fragment hTTR(59-127), which is also found in SSA amyloids in vivo. To the best of our knowledge, these findings highlight a novel pathogenic mechanism for SSA whereby increased permeability of the gut mucosa, as often occurs in elderly people, allows subtilisin (and perhaps other yet unidentified bacterial proteases) to reach the bloodstream and trigger generation of hTTR fragments, acting as seeding nuclei for preferential amyloid fibrils deposition in the heart.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Bacillus subtilis/enzimologia , Pré-Albumina/metabolismo , Serina Proteases/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/química , Linhagem Celular , Humanos , Hidrólise , Espectrometria de Massas/métodos , Modelos Moleculares , Permeabilidade , Pré-Albumina/química , Conformação Proteica , Serina Proteases/química , Subtilisina/química , Subtilisina/metabolismo
18.
Sci Rep ; 9(1): 19432, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857654

RESUMO

GPRC6A is acknowledged as a major regulator of energy metabolism and male fertility through the action of undercarboxylated osteocalcin (ucOCN), representing a possible therapeutic target. We recently showed that the sex hormone-binding globulin (SHBG) binds to GPRC6A through the likely involvement of the 141-161 domain. To confirm this model, here we investigated the possible binding and agonist activity of SHBG(141-161) domain-peptide (SHBG141-161) on GPRC6A. The binding of SHBG141-161 to GPRC6A and downstream dissociation from Gαi(GDP) protein was computationally modelled. SHBG141-161 was obtained by solid-phase synthesis, characterized by circular dichroism (CD) and the receptor binding was assessed by displacement of ucOCN on HEK-293 cells transfected with GPRC6A gene. Agonist activity of SHBG141-161 was assessed on Leydig MA-10 and Langerhans ß-TC6 cell lines through the GPRC6A-mediated release of testosterone (T) and insulin. SHBG141-161 was predicted to bind to GPRC6A and to reduce the affinity for Gαi(GDP) at computational level. Conformational properties and binding to GPRC6A of the synthetic SHBG141-161 were confirmed by CD and displacement experiments. SHBG141-161 stimulated cell secretion of T and insulin, with dose dependency from 10-13 to 10-11M for T release (respectively P = 0,041 10-13M; P = 0,032 10-12M; P = 0,008 10-11M vs basal) and for 10-12 to 10-10M for insulin (respectively P = 0,041 10-12M; P = 0,007 10-11M; P = 0,047 10-10M; P = 0,045 vs basal). Blockade with anti GPRC6A IgG abolished the response to SHBG141-161, suggesting agonist specificity. SHBG141-161 showed stimulating activity on GPRC6A, representing a template peptide with possible therapeutic use for metabolic and endocrine disorders.


Assuntos
Células de Langerhans/metabolismo , Células Intersticiais do Testículo/metabolismo , Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Globulina de Ligação a Hormônio Sexual/química , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Peptídeos/química , Domínios Proteicos
19.
ACS Nano ; 11(2): 2160-2170, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28151647

RESUMO

The collagen-binding protein Cna is a prototype cell surface protein from Staphylococcus aureus which fulfils important physiological functions during pathogenesis. While it is established that Cna binds to collagen (Cn) via the high-affinity collagen hug mechanism, whether this protein is engaged in other ligand-binding mechanisms is poorly understood. Here, we use atomic force microscopy to demonstrate that Cna mediates attachment to two structurally and functionally different host proteins, i.e., the complement system protein C1q and the extracellular matrix protein laminin (Lam), through binding mechanisms that differ from the collagen hug. We show that single Cna-C1q and Cna-Lam bonds are much weaker than the high-affinity Cna-Cn bond and that their formation does not require the B-region of Cna. At the whole cell level, we find that bacterial adhesion to C1q-substrates involves only one (or two) molecular bond(s), while adhesion to Lam is mediated by multiple bonds, thus suggesting that multivalent or cooperative interactions may enhance the strength of adhesion. Both C1q and Lam interactions can be efficiently blocked by monoclonal antibodies directed against the minimal Cn-binding domain of Cna. These results show that Cna is a multifunctional protein capable of binding to multiple host ligands through mechanisms that differ from the classical collagen hug.


Assuntos
Adesinas Bacterianas/metabolismo , Imagem Individual de Molécula , Análise de Célula Única , Staphylococcus aureus/química , Adesinas Bacterianas/química , Adesão Celular , Microscopia de Força Atômica , Staphylococcus aureus/citologia , Staphylococcus aureus/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA