Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563310

RESUMO

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Esclerose Múltipla , Humanos , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Locos de Características Quantitativas , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Inflamação/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único
2.
Immunity ; 55(3): 542-556.e5, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35151371

RESUMO

Some patients hospitalized with acute COVID-19 suffer respiratory symptoms that persist for many months. We delineated the immune-proteomic landscape in the airways and peripheral blood of healthy controls and post-COVID-19 patients 3 to 6 months after hospital discharge. Post-COVID-19 patients showed abnormal airway (but not plasma) proteomes, with an elevated concentration of proteins associated with apoptosis, tissue repair, and epithelial injury versus healthy individuals. Increased numbers of cytotoxic lymphocytes were observed in individuals with greater airway dysfunction, while increased B cell numbers and altered monocyte subsets were associated with more widespread lung abnormalities. A one-year follow-up of some post-COVID-19 patients indicated that these abnormalities resolved over time. In summary, COVID-19 causes a prolonged change to the airway immune landscape in those with persistent lung disease, with evidence of cell death and tissue repair linked to the ongoing activation of cytotoxic T cells.


Assuntos
Linfócitos B/imunologia , COVID-19/imunologia , Monócitos/imunologia , Transtornos Respiratórios/imunologia , Sistema Respiratório/imunologia , SARS-CoV-2/fisiologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , COVID-19/complicações , Feminino , Seguimentos , Humanos , Imunidade Celular , Imunoproteínas , Masculino , Pessoa de Meia-Idade , Proteoma , Transtornos Respiratórios/etiologia , Sistema Respiratório/patologia
4.
Nature ; 616(7955): 123-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991119

RESUMO

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Assuntos
Doença da Artéria Coronariana , Multiômica , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Metabolômica/métodos , Fenótipo , Proteômica/métodos , Aprendizado de Máquina , Negro ou Afro-Americano/genética , Asiático/genética , População Europeia/genética , Reino Unido , Conjuntos de Dados como Assunto , Internet , Reprodutibilidade dos Testes , Estudos de Coortes , Proteoma/análise , Proteoma/metabolismo , Metaboloma , Plasma/metabolismo , Bases de Dados Factuais
5.
Am J Physiol Cell Physiol ; 326(1): C112-C124, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047304

RESUMO

The gut peptide cholecystokinin (CCK) is released during feeding and promotes satiation by increasing excitation of vagal afferent neurons that innervate the upper gastrointestinal tract. Vagal afferent neurons express CCK1 receptors (CCK1Rs) in the periphery and at central terminals in the nucleus of the solitary tract (NTS). While the effects of CCK have been studied for decades, CCK receptor signaling and coupling to membrane ion channels are not entirely understood. Previous findings have implicated L-type voltage-gated calcium channels as well as transient receptor potential (TRP) channels in mediating the effects of CCK, but the lack of selective pharmacology has made determining the contributions of these putative mediators difficult. The nonselective ion channel transient receptor potential vanilloid subtype 1 (TRPV1) is expressed throughout vagal afferent neurons and controls many forms of signaling, including spontaneous glutamate release onto NTS neurons. Here we tested the hypothesis that CCK1Rs couple directly to TRPV1 to mediate vagal signaling using fluorescent calcium imaging and brainstem electrophysiology. We found that CCK signaling at high concentrations (low-affinity binding) was potentiated in TRPV1-containing afferents and that TRPV1 itself mediated the enhanced CCK1R signaling. While competitive antagonism of TRPV1 failed to alter CCK1R signaling, TRPV1 pore blockade or genetic deletion (TRPV1 KO) significantly reduced the CCK response in cultured vagal afferents and eliminated its ability to increase spontaneous glutamate release in the NTS. Together, these results establish that TRPV1 mediates the low-affinity effects of CCK on vagal afferent activation and control of synaptic transmission in the brainstem.NEW & NOTEWORTHY Cholecystokinin (CCK) signaling via the vagus nerve reduces food intake and produces satiation, yet the signaling cascades mediating these effects remain unknown. Here we report that the capsaicin receptor transient receptor potential vanilloid subtype 1 (TRPV1) potentiates CCK signaling in the vagus and mediates the ability of CCK to control excitatory synaptic transmission in the nucleus of the solitary tract. These results may prove useful in the future development of CCK/TRPV1-based therapeutic interventions.


Assuntos
Ácido Glutâmico , Canais de Potencial de Receptor Transitório , Ácido Glutâmico/metabolismo , Núcleo Solitário , Neurônios Aferentes/metabolismo , Nervo Vago , Colecistocinina/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo
6.
Mov Disord ; 39(1): 173-182, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964429

RESUMO

BACKGROUND: The current literature comparing outcomes after a unilateral magnetic resonance image-guided focused ultrasound (MRgFUS) thalamotomy between tremor syndromes is limited and remains a possible preoperative factor that could help predict the long-term outcomes. OBJECTIVE: The aim was to report on the outcomes between different tremor syndromes after a unilateral MRgFUS thalamotomy. METHODS: A total of 66 patients underwent a unilateral MRgFUS thalamotomy for tremor between November 2018 and May 2020 at St Vincent's Hospital Sydney. Each patient's tremor syndrome was classified prior to treatment. Clinical assessments, including the hand tremor score (HTS) and Quality of Life in Essential Tremor Questionnaire (QUEST), were performed at baseline and predefined intervals to 36 months. RESULTS: A total of 63 patients, comprising 30 essential tremor (ET), 24 dystonic tremor (DT), and 9 Parkinson's disease tremor (PDT) patients, returned for at least one follow-up. In the ET patients, at 24 months there was a 61% improvement in HTS and 50% improvement in QUEST compared to baseline. This is in comparison to PDT patients, where an initial benefit in HTS and QUEST was observed, which waned at each follow-up, remaining significant only up until 12 months. In the DT patients, similar results were observed to the ET patients: at 24 months there was a 61% improvement in HTS and 43% improvement in QUEST compared to baseline. CONCLUSION: These results support the use of unilateral MRgFUS thalamotomy for the treatment of DT, which appears to have a similar expected outcome to patients diagnosed with ET. Patients with PDT should be warned that there is a risk of treatment failure. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Tremor Essencial , Humanos , Resultado do Tratamento , Tremor Essencial/cirurgia , Tremor/cirurgia , Qualidade de Vida , Ultrassonografia de Intervenção/métodos , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Imageamento por Ressonância Magnética/métodos
7.
Exp Physiol ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308846

RESUMO

Circadian regulation of autonomic tone and reflex pathways pairs physiological processes with the daily light cycle. However, the underlying mechanisms mediating these changes on autonomic neurocircuitry are only beginning to be understood. The brainstem nucleus of the solitary tract (NTS) and adjacent nuclei, including the area postrema and dorsal motor nucleus of the vagus, are key candidates for rhythmic control of some aspects of the autonomic nervous system. Recent findings have contributed to a working model of circadian regulation in the brainstem which manifests from the transcriptional, to synaptic, to circuit levels of organization. Vagal afferent neurons and the NTS possess rhythmic clock gene expression, rhythmic action potential firing, and our recent findings demonstrate rhythmic spontaneous glutamate release. In addition, postsynaptic conductances also vary across the day producing subtle changes in membrane depolarization which govern synaptic efficacy. Together these coordinated pre- and postsynaptic changes provide nuanced control of synaptic transmission across the day to tune the sensitivity of primary afferent input and likely govern reflex output. Further, given the important role for the brainstem in integrating cues such as feeding, cardiovascular function and temperature, it may also be an underappreciated locus in mediating the effects of such non-photic entraining cues. This short review focuses on the neurophysiological principles that govern NTS synaptic transmission and how circadian rhythms impacted them across the day.

8.
Nature ; 558(7708): 73-79, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875488

RESUMO

Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.


Assuntos
Proteínas Sanguíneas/genética , Genômica , Proteoma/genética , Feminino , Fator de Crescimento de Hepatócito/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Masculino , Mutação de Sentido Incorreto/genética , Mieloblastina/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Proteínas Proto-Oncogênicas/genética , Locos de Características Quantitativas/genética , Vasculite/genética , alfa 1-Antitripsina/genética
9.
J Physiol ; 601(10): 1881-1896, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36975145

RESUMO

Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.


Assuntos
Ritmo Circadiano , Ácido Glutâmico , Núcleo Solitário , Sinapses , Ritmo Circadiano/fisiologia , Ácido Glutâmico/metabolismo , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Sinapses/metabolismo , Neurônios Aferentes/metabolismo , Nervo Vago/citologia , Nervo Vago/fisiologia , Potenciais de Ação , Masculino , Animais , Camundongos , Gânglio Nodoso/metabolismo , Transdução de Sinais , Condutividade Elétrica , Técnicas de Patch-Clamp
10.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35387486

RESUMO

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Estudos Transversais , Estudo de Associação Genômica Ampla , Humanos , Receptores de Coronavírus , SARS-CoV-2
11.
Kidney Int ; 104(3): 526-541, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37172690

RESUMO

The Banff Classification for Allograft Pathology includes the use of gene expression in the diagnosis of antibody-mediated rejection (AMR) of kidney transplants, but a predictive set of genes for classifying biopsies with 'incomplete' phenotypes has not yet been studied. Here, we developed and assessed a gene score that, when applied to biopsies with features of AMR, would identify cases with a higher risk of allograft loss. To do this, RNA was extracted from a continuous retrospective cohort of 349 biopsies randomized 2:1 to include 220 biopsies in a discovery cohort and 129 biopsies in a validation cohort. The biopsies were divided into three groups: 31 that fulfilled the 2019 Banff Criteria for active AMR, 50 with histological features of AMR but not meeting the full criteria (Suspicious-AMR), and 269 with no features of active AMR (No-AMR). Gene expression analysis using the 770 gene Banff Human Organ Transplant NanoString panel was carried out with LASSO Regression performed to identify a parsimonious set of genes predictive of AMR. We identified a nine gene score that was highly predictive of active AMR (accuracy 0.92 in the validation cohort) and was strongly correlated with histological features of AMR. In biopsies suspicious for AMR, our gene score was strongly associated with risk of allograft loss and independently associated with allograft loss in multivariable analysis. Thus, we show that a gene expression signature in kidney allograft biopsy samples can help classify biopsies with incomplete AMR phenotypes into groups that correlate strongly with histological features and outcomes.


Assuntos
Transplante de Rim , Humanos , Anticorpos , Biópsia , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Transplante de Rim/efeitos adversos , Estudos Retrospectivos
12.
Entropy (Basel) ; 24(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37420518

RESUMO

The neural systems' electric activities are fundamental for the phenomenology of consciousness. Sensory perception triggers an information/energy exchange with the environment, but the brain's recurrent activations maintain a resting state with constant parameters. Therefore, perception forms a closed thermodynamic cycle. In physics, the Carnot engine is an ideal thermodynamic cycle that converts heat from a hot reservoir into work, or inversely, requires work to transfer heat from a low- to a high-temperature reservoir (the reversed Carnot cycle). We analyze the high entropy brain by the endothermic reversed Carnot cycle. Its irreversible activations provide temporal directionality for future orientation. A flexible transfer between neural states inspires openness and creativity. In contrast, the low entropy resting state parallels reversible activations, which impose past focus via repetitive thinking, remorse, and regret. The exothermic Carnot cycle degrades mental energy. Therefore, the brain's energy/information balance formulates motivation, sensed as position or negative emotions. Our work provides an analytical perspective of positive and negative emotions and spontaneous behavior from the free energy principle. Furthermore, electrical activities, thoughts, and beliefs lend themselves to a temporal organization, an orthogonal condition to physical systems. Here, we suggest that an experimental validation of the thermodynamic origin of emotions might inspire better treatment options for mental diseases.

13.
J Neurophysiol ; 125(1): 199-210, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296617

RESUMO

Vagal afferent fibers contact neurons in the nucleus of the solitary tract (NTS) and release glutamate via three distinct release pathways: synchronous, asynchronous, and spontaneous. The presence of TRPV1 in vagal afferents is predictive of activity-dependent asynchronous glutamate release along with temperature-sensitive spontaneous vesicle fusion. However, pharmacological blockade or genetic deletion of TRPV1 does not eliminate the asynchronous profile and only attenuates the temperature-dependent spontaneous release at high temperatures (>40°C), indicating additional temperature-sensitive calcium conductance(s) contributing to these release pathways. The transient receptor potential cation channel melastatin subtype 3 (TRPM3) is a calcium-selective channel that functions as a thermosensor (30-37°C) in somatic primary afferent neurons. We predict that TRPM3 is expressed in vagal afferent neurons and contributes to asynchronous and spontaneous glutamate release pathways. We investigated these hypotheses via measurements on cultured nodose neurons and in brainstem slice preparations containing vagal afferent to NTS synaptic contacts. We found histological and genetic evidence that TRPM3 is highly expressed in vagal afferent neurons. The TRPM3-selective agonist, pregnenolone sulfate, rapidly and reversibly activated the majority (∼70%) of nodose neurons; most of which also contained TRPV1. We confirmed the role of TRPM3 with pharmacological blockade and genetic deletion. In the brain, TRPM3 signaling strongly controlled both basal and temperature-driven spontaneous glutamate release. Surprisingly, genetic deletion of TRPM3 did not alter synchronous or asynchronous glutamate release. These results provide convergent evidence that vagal afferents express functional TRPM3 that serves as an additional temperature-sensitive calcium conductance involved in controlling spontaneous glutamate release onto neurons in the NTS.NEW & NOTEWORTHY Vagal afferent signaling coordinates autonomic reflex function and informs associated behaviors. Thermosensitive transient receptor potential (TRP) channels detect temperature and nociceptive stimuli in somatosensory afferent neurons, however their role in vagal signaling remains less well understood. We report that the TRPM3 ion channel provides a major thermosensitive point of control over vagal signaling and synaptic transmission. We conclude that TRPM3 translates physiological changes in temperature to neurophysiological outputs and can serve as a cellular integrator in vagal afferent signaling.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios Aferentes/metabolismo , Canais de Cátion TRPM/metabolismo , Nervo Vago/metabolismo , Potenciais de Ação , Animais , Potenciais Pós-Sinápticos Excitadores , Exocitose , Temperatura Alta , Masculino , Neurônios Aferentes/fisiologia , Pregnenolona/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/genética , Nervo Vago/citologia , Nervo Vago/fisiologia
14.
Proc Biol Sci ; 288(1947): 20210394, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33784860

RESUMO

Considerable controversy exists about which hypotheses and variables best explain mammalian brain size variation. We use a new, high-coverage dataset of marsupial brain and body sizes, and the first phylogenetically imputed full datasets of 16 predictor variables, to model the prevalent hypotheses explaining brain size evolution using phylogenetically corrected Bayesian generalized linear mixed-effects modelling. Despite this comprehensive analysis, litter size emerges as the only significant predictor. Marsupials differ from the more frequently studied placentals in displaying a much lower diversity of reproductive traits, which are known to interact extensively with many behavioural and ecological predictors of brain size. Our results therefore suggest that studies of relative brain size evolution in placental mammals may require targeted co-analysis or adjustment of reproductive parameters like litter size, weaning age or gestation length. This supports suggestions that significant associations between behavioural or ecological variables with relative brain size may be due to a confounding influence of the extensive reproductive diversity of placental mammals.


Assuntos
Marsupiais , Animais , Teorema de Bayes , Evolução Biológica , Feminino , Marsupiais/genética , Tamanho do Órgão , Filogenia , Gravidez
15.
PLoS Genet ; 14(9): e1007458, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30199539

RESUMO

Chronic inflammation in inflammatory bowel disease (IBD) results from a breakdown of intestinal immune homeostasis and compromise of the intestinal barrier. Genome-wide association studies have identified over 200 genetic loci associated with risk for IBD, but the functional mechanisms of most of these genetic variants remain unknown. Polymorphisms at the TNFSF15 locus, which encodes the TNF superfamily cytokine commonly known as TL1A, are associated with susceptibility to IBD in multiple ethnic groups. In a wide variety of murine models of inflammation including models of IBD, TNFSF15 promotes immunopathology by signaling through its receptor DR3. Such evidence has led to the hypothesis that expression of this lymphocyte costimulatory cytokine increases risk for IBD. In contrast, here we show that the IBD-risk haplotype at TNFSF15 is associated with decreased expression of the gene by peripheral blood monocytes in both healthy volunteers and IBD patients. This association persists under various stimulation conditions at both the RNA and protein levels and is maintained after macrophage differentiation. Utilizing a "recall-by-genotype" bioresource for allele-specific expression measurements in a functional fine-mapping assay, we localize the polymorphism controlling TNFSF15 expression to the regulatory region upstream of the gene. Through a T cell costimulation assay, we demonstrate that genetically regulated TNFSF15 has functional relevance. These findings indicate that genetically enhanced expression of TNFSF15 in specific cell types may confer protection against the development of IBD.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Predisposição Genética para Doença , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adulto , Alelos , Células Cultivadas , Colite Ulcerativa/sangue , Colite Ulcerativa/imunologia , Doença de Crohn/sangue , Doença de Crohn/imunologia , Feminino , Haplótipos/genética , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Cultura Primária de Células , Locos de Características Quantitativas/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Adulto Jovem
16.
Am J Physiol Cell Physiol ; 318(4): C787-C796, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073876

RESUMO

Cholecystokinin (CCK) is a gut-derived peptide that potently promotes satiety and facilitates gastric function in part by activating G protein-coupled CCK1 receptors on primary vagal afferent neurons. CCK signaling is dynamic and rapidly desensitizes, due to decreases in either receptor function and the resulting signal cascade, ion channel effectors, or both. Here we report a decay-time analytical approach using fluorescent calcium imaging that relates peak and steady-state calcium responses in dissociated vagal afferent neurons, enabling discrimination between receptor and ion channel effector functions. We found desensitization of CCK-induced activation was predictable, consistent across cells, and strongly concentration dependent. The decay-time constant (tau) was inversely proportional to CCK concentration, apparently reflecting the extent of receptor activation. To test this possibility, we directly manipulated the ion channel effector(s) with either decreased bath calcium or the broad-spectrum pore blocker ruthenium red. Conductance inhibition diminished the magnitude of the CCK responses without altering decay kinetics, confirming changes in tau reflect changes in receptor function selectively. Next, we investigated the contributions of the PKC and PKA signaling cascades on the magnitude and decay-time constants of CCK calcium responses. While inhibition of either PKC or PKA increased CCK calcium response magnitude, only general PKC inhibition significantly decreased the decay-time constant. These findings suggest that PKC alters CCK receptor signaling dynamics, while PKA alters the ion channel effector of the CCK response. This analytical approach should prove useful in understanding receptor/effector changes underlying acute desensitization of G-protein coupled signaling and provide insight into CCK receptor dynamics.


Assuntos
Colecistocinina/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos , Animais , Cálcio/metabolismo , Neurônios/efeitos dos fármacos , Neurônios Aferentes/citologia , Neurônios Aferentes/fisiologia , Gânglio Nodoso/citologia , Gânglio Nodoso/fisiologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
17.
Am J Physiol Cell Physiol ; 319(6): C1097-C1106, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966126

RESUMO

Circulating blood glucocorticoid levels are dynamic and responsive to stimuli that impact autonomic function. In the brain stem, vagal afferent terminals release the excitatory neurotransmitter glutamate to neurons in the nucleus of the solitary tract (NTS). Vagal afferents integrate direct visceral signals and circulating hormones with ongoing NTS activity to control autonomic function and behavior. Here, we investigated the effects of corticosterone (CORT) on glutamate signaling in the NTS using patch-clamp electrophysiology on brain stem slices containing the NTS and central afferent terminals from male C57BL/6 mice. We found that CORT rapidly decreased both action potential-evoked and spontaneous glutamate signaling. The effects of CORT were phenocopied by dexamethasone and blocked by mifepristone, consistent with glucocorticoid receptor (GR)-mediated signaling. While mRNA for GR was present in both the NTS and vagal afferent neurons, selective intracellular quenching of G protein signaling in postsynaptic NTS neurons eliminated the effects of CORT. We then investigated the contribution of retrograde endocannabinoid signaling, which has been reported to transduce nongenomic GR effects. Pharmacological or genetic elimination of the cannabinoid type 1 receptor signaling blocked CORT suppression of glutamate release. Together, our results detail a mechanism, whereby the NTS integrates endocrine CORT signals with fast neurotransmission to control autonomic reflex pathways.


Assuntos
Corticosterona/farmacologia , Endocanabinoides/metabolismo , Ácido Glutâmico/metabolismo , Neurônios Aferentes/metabolismo , Núcleo Solitário/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Dexametasona/farmacologia , Potenciais Evocados/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mifepristona/farmacologia , Técnicas de Patch-Clamp , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
18.
J Neurophysiol ; 124(5): 1388-1398, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965166

RESUMO

Vagal afferent neurons abundantly express excitatory transient receptor potential (TRP) channels, which strongly influence afferent signaling. Cannabinoids have been identified as direct agonists of TRP channels, including TRPA1 and TRPV1, suggesting that exogenous cannabinoids may influence vagal signaling via TRP channel activation. The diverse therapeutic effects of electrical vagus nerve stimulation also result from administration of the nonpsychotropic cannabinoid, cannabidiol (CBD); however, the direct effects of CBD on vagal afferent signaling remain unknown. We investigated actions of CBD on vagal afferent neurons, using calcium imaging and electrophysiology. CBD produced strong excitatory effects in neurons expressing TRPA1. CBD responses were prevented by removal of bath calcium, ruthenium red, and the TRPA1 antagonist A967079, but not the TRPV1 antagonist SB366791, suggesting an essential role for TRPA1. These pharmacological experiments were confirmed using genetic knockouts where TRPA1 KO mice lacked CBD responses, whereas TRPV1 knockout (KO) mice exhibited CBD-induced activation. We also characterized CBD-provoked inward currents at resting potentials in vagal afferents expressing TRPA1 that were absent in TRPA1 KO mice, but persisted in TRPV1 KO mice. CBD also inhibited voltage-activated sodium conductances in A-fiber, but not in C-fiber afferents. To simulate adaptation, resulting from chronic cannabis use, we administered cannabis extract vapor daily for 3 wk. Cannabis exposure reduced the magnitude of CBD responses, likely due to a loss of TRPA1 signaling. Together, these findings detail a novel excitatory action of CBD at vagal afferent neurons, which requires TRPA1 and may contribute to the vagal mimetic effects of CBD and adaptation following chronic cannabis use.NEW & NOTEWORTHY CBD usage has increased with its legalization. The clinical efficacy of CBD has been demonstrated for conditions including some forms of epilepsy, depression, and anxiety that are also treatable by vagus nerve stimulation. We found CBD exhibited direct excitatory effects on vagal afferent neurons that required TRPA1, were augmented by TRPV1, and attenuated following chronic cannabis vapor exposure. These effects may contribute to vagal mimetic effects of CBD and adaptation after chronic cannabis use.


Assuntos
Canabidiol/administração & dosagem , Canal de Cátion TRPA1/fisiologia , Canais de Cátion TRPV/fisiologia , Nervo Vago/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos Knockout , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Imagem Óptica , Ratos Sprague-Dawley , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética , Nervo Vago/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA