Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 46(6): 1078-1088, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603032

RESUMO

There is a clinical need for early detection of chronic kidney disease (CKD) in patients with organic acidurias. We measured kidney markers in a longitudinal study over 5 years in 40 patients with methylmalonic aciduria (Mut0 ), propionic aciduria (PA), cobalamin A (CblA), and cobalamin C (CblC) deficiencies. Neutrophil gelatinase-associated lipocalin (NGAL), calprotectin (CLP), kidney injury molecule-1 (KIM-1), dickkopf-3 (DKK-3), albumin and beta-2-microglobulin (B2MG) in urine, as well as cystatin C (CysC) in serum were quantified. In Mut0 patients, mean concentrations of B2MG, KIM-1, and DKK-3 were elevated compared with healthy controls, all markers indicative of proximal tubule damage. In PA patients, mean B2MG, albumin, and CLP were elevated, indicating signs of proximal tubule and glomerulus damage and inflammation. In CblC patients, mean B2MG, NGAL, and CLP were increased, and considered as markers for proximal and distal tubule damage and inflammation. B2MG, was elevated in all three diseases, and correlated with DKK-3 in Mut0 /CblA and with eGFR(CysC) and KIM-1 in PA patients, respectively. None of the markers were elevated in CblA patients. Significant deterioration of kidney function, as determined by steady increase in CysC concentrations was noted in seven patients within the observation period. None of the investigated biomarker profiles showed a clear increase or added value for early detection. In conclusion, we identified disease-specific biomarker profiles for inflammation, tubular, and proximal damage in the urine of Mut0 , PA, and CblC patients. Whether these biomarkers can be used for early detection of CKD requires further investigation, as significant kidney function deterioration was observed in only a few patients.


Assuntos
Insuficiência Renal Crônica , Humanos , Lipocalina-2/urina , Estudos Longitudinais , Biomarcadores/urina , Insuficiência Renal Crônica/diagnóstico , Rim , Vitamina B 12 , Aminoácidos de Cadeia Ramificada , Inflamação , Albuminas
2.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576148

RESUMO

BACKGROUND: Amino acids have a central role in cell metabolism, and intracellular changes contribute to the pathogenesis of various diseases, while the role and specific organ distribution of dipeptides is largely unknown. METHOD: We established a sensitive, rapid and reliable UPLC-MS/MS method for quantification of 36 dipeptides. Dipeptide patterns were analyzed in brown and white adipose tissues, brain, eye, heart, kidney, liver, lung, muscle, sciatic nerve, pancreas, spleen and thymus, serum and urine of C57BL/6N wildtype mice and related to the corresponding amino acid profiles. RESULTS: A total of 30 out of the 36 investigated dipeptides were detected with organ-specific distribution patterns. Carnosine and anserine were most abundant in all organs, with the highest concentrations in muscles. In liver, Asp-Gln and Ala-Gln concentrations were high, in the spleen and thymus, Glu-Ser and Gly-Asp. In serum, dipeptide concentrations were several magnitudes lower than in organ tissues. In all organs, dipeptides with C-terminal proline (Gly-Pro and Leu-Pro) were present at higher concentrations than dipeptides with N-terminal proline (Pro-Gly and Pro-Leu). Organ-specific amino acid profiles were related to the dipeptide profile with several amino acid concentrations being related to the isomeric form of the dipeptides. Aspartate, histidine, proline and serine tissue concentrations correlated with dipeptide concentrations, when the amino acids were present at the C- but not at the N-terminus. CONCLUSION: Our multi-dipeptide quantification approach demonstrates organ-specific dipeptide distribution. This method allows us to understand more about the dipeptide metabolism in disease or in healthy state.


Assuntos
Dipeptídeos/análise , Especificidade de Órgãos , Espectrometria de Massas em Tandem , Aminoácidos/análise , Animais , Líquidos Corporais/metabolismo , Cromatografia Líquida de Alta Pressão , Dipeptídeos/química , Camundongos Endogâmicos C57BL , Padrões de Referência , Reprodutibilidade dos Testes , Estereoisomerismo
3.
Cell Mol Life Sci ; 76(22): 4551-4568, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31073745

RESUMO

The gene CNDP1 was associated with the development of diabetic nephropathy. Its enzyme carnosinase 1 (CN1) primarily hydrolyzes the histidine-containing dipeptide carnosine but other organ and metabolic functions are mainly unknown. In our study we generated CNDP1 knockout zebrafish, which showed strongly decreased CN1 activity and increased intracellular carnosine levels. Vasculature and kidneys of CNDP1-/- zebrafish were not affected, except for a transient glomerular alteration. Amino acid profiling showed a decrease of certain amino acids in CNDP1-/- zebrafish, suggesting a specific function for CN1 in the amino acid metabolisms. Indeed, we identified a CN1 activity for Ala-His and Ser-His. Under diabetic conditions increased carnosine levels in CNDP1-/- embryos could not protect from respective organ alterations. Although, weight gain through overfeeding was restrained by CNDP1 loss. Together, zebrafish exhibits CN1 functions, while CNDP1 knockout alters the amino acid metabolism, attenuates weight gain but cannot protect organs from diabetic complications.


Assuntos
Aminoácidos/metabolismo , Complicações do Diabetes/metabolismo , Dipeptidases/metabolismo , Aumento de Peso/fisiologia , Animais , Carnosina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Técnicas de Inativação de Genes/métodos , Rim/metabolismo , Peixe-Zebra
4.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664451

RESUMO

Carnosinase 1 (CN1) is encoded by the Cndp1 gene and degrades carnosine and anserine, two natural histidine-containing dipeptides. In vitro and in vivo studies suggest carnosine- and anserine-mediated protection against long-term sequelae of reactive metabolites accumulating, e.g., in diabetes mellitus. We have characterized the metabolic impact of CN1 in 11- and 55-week-old Cndp1-knockout (Cndp1-KO) mice and litter-matched wildtypes (WT). In Cndp1-KO mice, renal carnosine and anserine concentrations were gender-specifically increased 2- to 9-fold, respectively in the kidney and both most abundant in the renal cortex, but remained unchanged in all other organs and in serum. Renal oxidized/reduced glutathione concentrations, renal morphology and function were unaltered. In Cndp1-KO mice at week 11, renal asparagine, serine and glutamine levels and at week 55, renal arginine concentration were reduced. Renal heat-shock-protein 70 (Hspa1a/b) mRNA declined with age in WT but not in Cndp1-KO mice, transcription factor heat-shock-factor 1 was higher in 55-week-old KO mice. Fasting blood glucose concentrations decreased with age in WT mice, but were unchanged in Cndp1-KO mice. Blood glucose response to intraperitoneal insulin was gender- but not genotype-dependent, the response to intraperitoneal glucose injection was similar in all groups. A global Cndp1-KO selectively, age- and gender-specifically, increases renal carnosine and anserine concentrations, alters renal amino acid- and HSP70 profile and modifies systemic glucose homeostasis. Increase of the natural occurring carnosine and anserine levels in the kidney by modulation of CN1 represents a promising therapeutic approach to mitigate or prevent chronic kidney diseases such as diabetic nephropathy.


Assuntos
Anserina/metabolismo , Carnosina/metabolismo , Dipeptidases/metabolismo , RNA Mensageiro/metabolismo , Aminoácidos/metabolismo , Animais , Glicemia/metabolismo , Nefropatias Diabéticas/metabolismo , Feminino , Glucose/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Insulina/metabolismo , Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Hum Mutat ; 40(7): 938-951, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067009

RESUMO

ALG3-CDG is one of the very rare types of congenital disorder of glycosylation (CDG) caused by variants in the ER-mannosyltransferase ALG3. Here, we summarize the clinical, biochemical, and genetic data of four new ALG3-CDG patients, who were identified by a type I pattern of serum transferrin and the accumulation of Man5 GlcNAc2 -PP-dolichol in LLO analysis. Additional clinical symptoms observed in our patients comprise sensorineural hearing loss, right-descending aorta, obstructive cardiomyopathy, macroglossia, and muscular hypertonia. We add four new biochemically confirmed variants to the list of ALG3-CDG inducing variants: c.350G>C (p.R117P), c.1263G>A (p.W421*), c.1037A>G (p.N346S), and the intron variant c.296+4A>G. Furthermore, in Patient 1 an additional open-reading frame of 141 bp (AAGRP) in the coding region of ALG3 was identified. Additionally, we show that control cells synthesize, to a minor degree, a hybrid protein composed of the polypeptide AAGRP and ALG3 (AAGRP-ALG3), while in Patient 1 expression of this hybrid protein is significantly increased due to the homozygous variant c.160_196del (g.165C>T). By reviewing the literature and combining our findings with previously published data, we further expand the knowledge of this rare glycosylation defect.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Manosiltransferases/genética , Mutação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Animais , Células COS , Células Cultivadas , Pré-Escolar , Chlorocebus aethiops , Feminino , Humanos , Lactente , Masculino , Fases de Leitura Aberta , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Polimorfismo de Nucleotídeo Único
6.
Amino Acids ; 51(1): 7-16, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29922921

RESUMO

Carnosinase 1 (CN1) has been postulated to be a susceptibility factor for developing diabetic nephropathy (DN). Although its major substrate, carnosine, is beneficial in rodent models of DN, translation of these findings to humans has been hampered by high CN1 activity in human serum resulting in rapid degradation of carnosine. To overcome this hurdle, we screened a protease-directed small-molecule library for inhibitors of human recombinant CN1. We identified SAN9812 as a potent and highly selective inhibitor of CN1 activity with a Ki of 11 nM. It also inhibited CN1 activity in human serum and serum of transgenic mice-overexpressing human CN1. Subcutaneous administration of 30 mg/kg SAN9812 led to a sustained reduction in circulating CN1 activity in human CN1 transgenic (TG) mice. Simultaneous administration of carnosine and SAN9812 increased carnosine levels in plasma and kidney by up to 100-fold compared to treatment-naïve CN1-overexpressing mice. To our knowledge, this is the first study reporting on a potent and selective CN1 inhibitor with in vivo activity. SAN9812, also called carnostatine, may be used to increase renal carnosine concentration as a potential therapeutic modality for renal diseases linked to glycoxidative conditions.


Assuntos
Carnosina/administração & dosagem , Dipeptidases/antagonistas & inibidores , Descoberta de Drogas , Imidazóis/farmacologia , Propionatos/farmacologia , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Adulto , Animais , Carnosina/sangue , Dipeptidases/sangue , Dipeptidases/genética , Feminino , Expressão Gênica , Humanos , Imidazóis/química , Injeções Subcutâneas , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Propionatos/química , Inibidores de Proteases/química , Ligação Proteica , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Bibliotecas de Moléculas Pequenas/química , Transgenes
7.
Amino Acids ; 51(4): 611-617, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30610469

RESUMO

This study assessed if serum carnosinase (CNDP1) activity and concentration in patients with type 2 diabetes mellitus (T2D) with diabetic nephropathy (DN) differs from those without nephropathy. In a cross-sectional design 127 patients with T2D with DN ((CTG)5 homozygous patients n = 45) and 145 patients with T2D without nephropathy ((CTG)5 homozygous patients n = 47) were recruited. Univariate and multivariate regression analyses were performed to predict factors relevant for serum CNDP1 concentration. CNDP1 (CTG)5 homozygous patients with T2D with DN had significantly lower CNDP1 concentrations (30.4 ± 18.3 vs 51.2 ± 17.6 µg/ml, p < 0.05) and activity (1.25 ± 0.5 vs 2.53 ± 1.1 µmol/ml/h, p < 0.05) than those without nephropathy. This applied for patients with DN on the whole, irrespective of (CTG)5 homozygosity. In the multivariate regression analyses, lower serum CNDP1 concentrations correlated with impaired renal function and to a lesser extend with the CNDP1 genotype (95% CI of regression coefficients: eGFR: 0.10-1.94 (p = 0.001); genotype: - 0.05 to 5.79 (p = 0.055)). Our study demonstrates that serum CNDP1 concentrations associate with CNDP1 genotype and renal function in patients with T2D. Our data warrant further studies using large cohorts to confirm these findings and to delineate the correlation between low serum CNDP1 concentrations and renal function deterioration in patients with T2D.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Dipeptidases/genética , Dipeptidases/metabolismo , Polimorfismo de Nucleotídeo Único , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Nefropatias Diabéticas/patologia , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
8.
Cell Physiol Biochem ; 46(2): 713-726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621776

RESUMO

BACKGROUND/AIMS: Reactive dicarbonyl compounds, such as methylglyoxal (MG), contribute to diabetic complications. MG-scavenging capacities of carnosine and anserine, which have been shown to mitigate diabetic nephropathy, were evaluated in vitro and in vivo. METHODS: MG-induced cell toxicity was characterized by MTT and MG-H1-formation, scavenging abilities by Western Blot and NMR spectroscopies, cellular carnosine transport by qPCR and microplate luminescence and carnosine concentration by HPLC. RESULTS: In vitro, carnosine and anserine dose-dependently reduced N-carboxyethyl lysine (CEL) and advanced glycation end products (AGEs) formation. NMR studies revealed the formation of oligo/polymeric products of MG catalyzed by carnosine or anserine. MG toxicity (0.3-1 mM) was dose-dependent for podocytes, tubular and mesangial cells whereas low MG levels (0.2 mM) resulted in increased cell viability in podocytes (143±13%, p<0.001) and tubular cells (129±3%, p<0.001). Incubation with carnosine/anserine did not reduce MG-induced toxicity, independent of incubation times and across large ranges of MG to carnosine/anserine ratios. Cellular carnosine uptake was low (<0.1% in 20 hours) and cellular carnosine concentrations remained unaffected. The putative carnosine transporter PHT1 along with the taurine transporter (TauT) was expressed in all cell types while PEPT1, PEPT2 and PHT2, also belonging to the proton-coupled oligopeptide transporter (POT) family, were only expressed in tubular cells. CONCLUSION: While carnosine and anserine catalyze the formation of MG oligo/polymers, the molar ratios required for protection from MG-induced cellular toxicity are not achievable in renal cells. The effect of carnosine in vivo, to mitigate diabetic nephropathy may therefore be independent upon its ability to scavenge MG and/or carnosine is mainly acting extracellularly.


Assuntos
Carnosina/química , Carnosina/metabolismo , Polímeros/química , Aldeído Pirúvico/química , Animais , Anserina/análise , Anserina/química , Anserina/metabolismo , Carnosina/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Glutationa/análise , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Podócitos/citologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Polímeros/metabolismo , Aldeído Pirúvico/toxicidade , Albumina Sérica/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Simportadores/genética , Simportadores/metabolismo
9.
Mol Genet Metab ; 123(3): 364-374, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396028

RESUMO

Congenital disorders of glycosylation (CDG) are genetic defects in the glycoconjugate biosynthesis. >100 types of CDG are known, most of them cause multi-organ diseases. Here we describe a boy whose leading symptoms comprise cutis laxa, pancreatic insufficiency and hepatosplenomegaly. Whole exome sequencing identified the novel hemizygous mutation c.542T>G (p.L181R) in the X-linked ATP6AP1, an accessory protein of the mammalian vacuolar H+-ATPase, which led to a general N-glycosylation deficiency. Studies of serum N-glycans revealed reduction of complex sialylated and appearance of truncated diantennary structures. Proliferation of the patient's fibroblasts was significantly reduced and doubling time prolonged. Additionally, there were alterations in the fibroblasts' amino acid levels and the acylcarnitine composition. Especially, short-chain species were reduced, whereas several medium- to long-chain acylcarnitines (C14-OH to C18) were elevated. Investigation of the main lipid classes revealed that total cholesterol was significantly enriched in the patient's fibroblasts at the expense of phophatidylcholine and phosphatidylethanolamine. Within the minor lipid species, hexosylceramide was reduced, while its immediate precursor ceramide was increased. Since catalase activity and ACOX3 expression in peroxisomes were reduced, we assume an ATP6AP1-dependent impact on the ß-oxidation of fatty acids. These results help to understand the complex clinical characteristics of this new patient.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Cútis Laxa/genética , Insuficiência Pancreática Exócrina/genética , Metaboloma/genética , ATPases Vacuolares Próton-Translocadoras/genética , Acil-CoA Oxidase/metabolismo , Catalase/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/metabolismo , Cútis Laxa/diagnóstico , Cútis Laxa/metabolismo , Insuficiência Pancreática Exócrina/diagnóstico , Insuficiência Pancreática Exócrina/metabolismo , Ácidos Graxos/metabolismo , Genes Ligados ao Cromossomo X/genética , Humanos , Lactente , Masculino , Metabolômica , Oxirredução , ATPases Vacuolares Próton-Translocadoras/deficiência , Sequenciamento do Exoma
10.
J Inherit Metab Dis ; 41(1): 39-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29027595

RESUMO

Carnosinase (CN1) is a dipeptidase, encoded by the CNDP1 gene, that degrades histidine-containing dipeptides, such as carnosine, anserine and homocarnosine. Loss of CN1 function (also called carnosinase deficiency or aminoacyl-histidine dipeptidase deficiency) has been reported in a small number of patients with highly elevated blood carnosine concentrations, denoted carnosinaemia; it is unclear whether the variety of clinical symptoms in these individuals is causally related to carnosinase deficiency. Reduced CN1 function should increase serum carnosine concentrations but the genetic basis of carnosinaemia has not been formally confirmed to be due to CNDP1 mutations. A CNDP1 polymorphism associated with low CN1 activity correlates with significantly reduced risk for diabetic nephropathy, especially in women with type 2 diabetes, and may slow progression of chronic kidney disease in children with glomerulonephritis. Studies in rodents demonstrate antiproteinuric and vasculoprotective effects of carnosine, the precise molecular mechanisms, however, are still incompletely understood. Thus, carnosinemia due to CN1 deficiency may be a non-disease; in contrast, carnosine may potentially protect against long-term sequelae of reactive metabolites accumulating, e.g. in diabetes and chronic renal failure.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Encefalopatias Metabólicas Congênitas/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Nefropatias Diabéticas/enzimologia , Dipeptidases/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/epidemiologia , Encefalopatias Metabólicas Congênitas/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/genética , Dipeptidases/genética , Humanos , Mutação , Polimorfismo Genético , Prognóstico , Fatores de Proteção , Fatores de Risco
13.
J Nat Prod ; 81(8): 1734-1744, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30063346

RESUMO

European licorice roots ( Glycyrrhiza glabra), used in the food and beverage industry due to their distinctive sweet and typical licorice flavor, were fractionated, with the triterpenoid saponins isolated and their chemical structures determined by means of ESIMS, ESIMS/MS, HRESIMS, and 1D/2D NMR experiments. Next to the quantitatively predominant saponin glycyrrhizin (11) and some previously known saponins, the structures of 10 monodesmosidic saponins were assigned unequivocally for the first time, namely, 30-hydroxyglycyrrhizin (1), glycyrrhizin-20-methanoate (2), 24-hydroxyglucoglycyrrhizin (3), rhaoglycyrrhizin (4), 11-deoxorhaoglycyrrhizin (5), rhaoglucoglycyrrhizin (6), rhaogalactoglycyrrhizin (7), 11-deoxo-20α-glycyrrhizin (8), 20α-galacturonoylglycyrrhizin (9), and 20α-rhaoglycyrrhizin (10).


Assuntos
Glycyrrhiza/química , Raízes de Plantas/química , Saponinas/farmacologia , Antioxidantes/análise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Monossacarídeos/química , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray
14.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217069

RESUMO

BACKGROUND/AIMS: In rodents, carnosine treatment improves diabetic nephropathy, whereas little is known about the role and function of anserine, the methylated form of carnosine. METHODS: Antioxidant activity was measured by oxygen radical absorbance capacity and oxygen stress response in human renal tubular cells (HK-2) by RT-PCR and Western-Immunoblotting. In wildtype (WT) and diabetic mice (db/db), the effect of short-term anserine treatment on blood glucose, proteinuria and vascular permeability was measured. RESULTS: Anserine has a higher antioxidant capacity compared to carnosine (p < 0.001). In tubular cells (HK-2) stressed with 25 mM glucose or 20⁻100 µM hydrogen peroxide, anserine but not carnosine, increased intracellular heat shock protein (Hsp70) mRNA and protein levels. In HK-2 cells stressed with glucose, co-incubation with anserine also increased hemeoxygenase (HO-1) protein and reduced total protein carbonylation, but had no effect on cellular sirtuin-1 and thioredoxin protein concentrations. Three intravenous anserine injections every 48 h in 12-week-old db/db mice, improved blood glucose by one fifth, vascular permeability by one third, and halved proteinuria (all p < 0.05). CONCLUSION: Anserine is a potent antioxidant and activates the intracellular Hsp70/HO-1 defense system under oxidative and glycative stress. Short-term anserine treatment in diabetic mice improves glucose homeostasis and nephropathy.


Assuntos
Anserina/uso terapêutico , Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Animais , Nefropatias Diabéticas/tratamento farmacológico , Peróxido de Hidrogênio/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteinúria
15.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 654-662, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27932057

RESUMO

The reactive metabolite methylglyoxal (MG) has been identified as mediator of pain. Scavenging of free MG and the prevention of MG-derived post-translational modifications may provide a useful therapeutic treatment. An arginine-rich, fatty acid coupled, cyclic peptide (CycK(Myr)R4E) with high proteolytic stability and prolonged circulation was developed for the scavenging of MG. It was shown to reduce the formation of albumin-MG adducts in vitro and prevented MG-induced pain by reducing plasma MG levels through the formation of peptide-MG adducts in vivo. CycK(Myr)R4E therefore presents a promising option for the treatment of pain and other diabetic complications associated with high MG levels.


Assuntos
Analgésicos/uso terapêutico , Dor/prevenção & controle , Peptídeos Cíclicos/uso terapêutico , Aldeído Pirúvico/metabolismo , Sequência de Aminoácidos , Analgésicos/sangue , Analgésicos/química , Analgésicos/farmacocinética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Dor/sangue , Dor/metabolismo , Peptídeos Cíclicos/sangue , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Aldeído Pirúvico/sangue , Albumina Sérica/metabolismo
17.
J Enzyme Inhib Med Chem ; 32(1): 1102-1110, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28776438

RESUMO

In humans, low serum carnosinase (CN1) activity protects patients with type 2 diabetes from diabetic nephropathy. We now characterized the interaction of thiol-containing compounds with CN1 cysteine residue at position 102, which is important for CN1 activity. Reduced glutathione (GSH), N-acetylcysteine and cysteine (3.2 ± 0.4, 2.0 ± 0.3, 1.6 ± 0.2 µmol/mg/h/mM; p < .05) lowered dose-dependently recombinant CN1 (rCN1) efficiency (5.2 ± 0.2 µmol/mg/h/mM) and normalized increased CN1 activity renal tissue samples of diabetic mice. Inhibition was allosteric. Substitution of rCN1 cysteine residues at position 102 (Mut1C102S) and 229 (Mut2C229S) revealed that only cysteine-102 is influenced by cysteinylation. Molecular dynamic simulation confirmed a conformational rearrangement of negatively charged residues surrounding the zinc ions causing a partial shift of the carnosine ammonium head and resulting in a less effective pose of the substrate within the catalytic cavity and decreased activity. Cysteine-compounds influence the dynamic behaviour of CN1 and therefore present a promising option for the treatment of diabetes.


Assuntos
Dipeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Compostos de Sulfidrila/farmacologia , Regulação Alostérica/efeitos dos fármacos , Dipeptidases/metabolismo , Inibidores Enzimáticos/química , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Compostos de Sulfidrila/química
18.
J Inherit Metab Dis ; 39(5): 683-687, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27146437

RESUMO

Over the last 10 years, a total of 90 urine samples from patients with metabolic disorders and controls were circulated to different laboratories in Europe and overseas, starting with 67 laboratories in 2005 and reaching 101 in 2014. The participants were asked to analyse the samples in their usual way and to prepare a report as if to a non-specialist pediatrician. The performance for the detection of fumarase deficiency, glutaric aciduria type I, isovaleric aciduria, methylmalonic aciduria, mevalonic aciduria, phenylketonuria and propionic aciduria was excellent (98-100 %). Over the last few years, detection has clearly improved for tyrosinaemia type I (39 % in 2008 to over 80 % in 2011/2014), maple syrup urine disease (85 % in 2005 to 98 % in 2012), hawkinsinuria (62 % in 2010 to 88 % in 2014), aminoacylase I deficiency (43 % in 2009 to 73 % in 2012) and 3-methylcrotonyl-CoA carboxylase deficiency (60 % in 2005 to 93 % by 2011). Normal urines were mostly considered as normal (83-100 %), but laboratories often made additional diagnostic suggestions. When the findings were unambiguous, the reports were mostly clear. However, when they were less obvious, the content and quality of reports varied greatly. Repetition of organic acid measurements on a fresh sample was rarely suggested, while more complex or invasive diagnostic strategies, including further metabolic screening or biopsy were recommended. Surprisingly very few participants suggested referral from the general paediatrician to a specialist metabolic centre to confirm a diagnosis and, if applicable, to initiate treatment despite evidence suggesting that this improves the outcome for patients with inherited metabolic disorders. The reliability of qualitative organic acid analysis has improved over the last few years. However, several aspects of reporting to non-specialists may need discussion and clinicians need to be aware of the uncertainty inherent in all forms of laboratory diagnostic analysis.


Assuntos
Doenças Metabólicas/metabolismo , Doenças Metabólicas/urina , Urina/química , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/urina , Feminino , Humanos , Laboratórios , Masculino , Reprodutibilidade dos Testes
19.
Pflege ; 29(6): 315-321, 2016 11.
Artigo em Alemão | MEDLINE | ID: mdl-27849140

RESUMO

Background: In 2012 a pilot project «recruiting qualified employees for the elderly care sector¼ commissioned by the German Federal Ministry of Economics and Energy (BMWi) with Vietnam was initiated. 150 Vietnamese candidates with degrees in nursing were recruited and participated in a German language course in Hanoi for six months (level A2). 100 project participants then arrived in Germany in September 2013 and started a (shortened) 2-year training in elderly care at locations in four federal states. The aim was for the Vietnamese to work in German nursing homes for at least three years after completion of the training. The project was implemented by the GIZ Gesellschaft für Internationale Zusammenarbeit and evaluated by the IEGUS Institute for European Healthcare Research and Social Economy from January 2013 to March 2016. Aim: The aim was to explore the possibilities for training of young people from emerging markets to become geriatric nurses in Germany. The results have been used as a foundation for recommendations for companies within the social care sector. Method: The formative and summative evaluation was based on personal interviews, telephone and written questionnaires, consultations and observations. The contribution presents results of the interviews and questionnaires. All relevant stakeholders had been included: The Vietnamese, the nursing and language schools, the nursing providers and mentors. Results: This article summarizes the results of the project evaluation. It gives a first insight into the experiences made from a professional, cultural as well as linguistic point of view.


Assuntos
Povo Asiático/educação , Emigrantes e Imigrantes/educação , Enfermagem Geriátrica/educação , Enfermeiros Internacionais/educação , Adulto , Idoso , Currículo , Feminino , Alemanha , Instituição de Longa Permanência para Idosos , Humanos , Entrevista Psicológica , Satisfação no Emprego , Assistência de Longa Duração , Masculino , Casas de Saúde , Projetos Piloto
20.
Environ Microbiol ; 17(11): 4511-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26014207

RESUMO

Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C-specific genomic island (PACGI-1) that contains the highly expressed small heat shock protein sHsp20c, the founding member of a novel subclass of class B bacterial small heat shock proteins. sHsp20c and adjacent gene products are involved in resistance against heat shock. Heat stable sHsp20c is unconventionally expressed in stationary phase in a wide temperature range from 20 to 42°C. Purified sHsp20c has characteristic features of small heat shock protein class B as it is monodisperse, forms sphere-like 24-meric oligomers and exhibits significant chaperone activity. As the P. aeruginosa clone C population is significantly more heat shock resistant than genetically unrelated P. aeruginosa strains without sHsp20c, the horizontally acquired shsp20c operon might contribute to the survival of worldwide-distributed clone C strains.


Assuntos
Ilhas Genômicas/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Pseudomonas aeruginosa/genética , Sequência de Aminoácidos , Sequência de Bases , Infecção Hospitalar/microbiologia , DNA Bacteriano/genética , Temperatura Alta , Dados de Sequência Molecular , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA