Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant Cell ; 36(9): 3328-3343, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691576

RESUMO

Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress. Next, we measured this salt-specific response in 345 natural Arabidopsis (Arabidopsis thaliana) accessions and discovered a genetic locus, encoding the cell wall-modifying enzyme EXTENSIN ARABINOSE DEFICIENT TRANSFERASE (ExAD) that is associated with root bending in the presence of NaCl (hereafter salt). Extensins are a class of structural cell wall glycoproteins known as hydroxyproline (Hyp)-rich glycoproteins, which are posttranslationally modified by O-glycosylation, mostly involving Hyp-arabinosylation. We show that salt-induced ExAD-dependent Hyp-arabinosylation influences root bending responses and cell wall thickness. Roots of exad1 mutant seedlings, which lack Hyp-arabinosylation of extensin, displayed increased thickness of root epidermal cell walls and greater cell wall porosity. They also showed altered gravitropic root bending in salt conditions and a reduced salt-avoidance response. Our results suggest that extensin modification via Hyp-arabinosylation is a unique salt-specific cellular process required for the directional response of roots exposed to salinity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Raízes de Plantas , Salinidade , Parede Celular/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Gravitropismo , Arabinose/metabolismo , Cloreto de Sódio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicosilação
2.
Nucleic Acids Res ; 48(21): 11958-11981, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33170255

RESUMO

Advances in genome editing technologies have enabled manipulation of genomes at the single base level. These technologies are based on programmable nucleases (PNs) that include meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) nucleases and have given researchers the ability to delete, insert or replace genomic DNA in cells, tissues and whole organisms. The great flexibility in re-designing the genomic target specificity of PNs has vastly expanded the scope of gene editing applications in life science, and shows great promise for development of the next generation gene therapies. PN technologies share the principle of inducing a DNA double-strand break (DSB) at a user-specified site in the genome, followed by cellular repair of the induced DSB. PN-elicited DSBs are mainly repaired by the non-homologous end joining (NHEJ) and the microhomology-mediated end joining (MMEJ) pathways, which can elicit a variety of small insertion or deletion (indel) mutations. If indels are elicited in a protein coding sequence and shift the reading frame, targeted gene knock out (KO) can readily be achieved using either of the available PNs. Despite the ease by which gene inactivation in principle can be achieved, in practice, successful KO is not only determined by the efficiency of NHEJ and MMEJ repair; it also depends on the design and properties of the PN utilized, delivery format chosen, the preferred indel repair outcomes at the targeted site, the chromatin state of the target site and the relative activities of the repair pathways in the edited cells. These variables preclude accurate prediction of the nature and frequency of PN induced indels. A key step of any gene KO experiment therefore becomes the detection, characterization and quantification of the indel(s) induced at the targeted genomic site in cells, tissues or whole organisms. In this survey, we briefly review naturally occurring indels and their detection. Next, we review the methods that have been developed for detection of PN-induced indels. We briefly outline the experimental steps and describe the pros and cons of the various methods to help users decide a suitable method for their editing application. We highlight recent advances that enable accurate and sensitive quantification of indel events in cells regardless of their genome complexity, turning a complex pool of different indel events into informative indel profiles. Finally, we review what has been learned about PN-elicited indel formation through the use of the new methods and how this insight is helping to further advance the genome editing field.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , DNA/genética , Edição de Genes/métodos , Genoma , Mutação INDEL , Animais , Clonagem de Organismos/métodos , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Técnicas de Inativação de Genes , Humanos , Camundongos , Ovinos/genética , Solanum tuberosum/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Nucleases de Dedos de Zinco/genética , Nucleases de Dedos de Zinco/metabolismo
3.
Glycobiology ; 30(8): 528-538, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32039452

RESUMO

Protein N-glycosylation is an essential and highly conserved posttranslational modification found in all eukaryotic cells. Yeast, plants and mammalian cells, however, produce N-glycans with distinct structural features. These species-specific features not only pose challenges in selecting host cells for production of recombinant therapeutics for human medical use but also provide opportunities to explore and utilize species-specific glycosylation in design of vaccines. Here, we used reverse cross-species engineering to stably introduce plant core α3fucose (α3Fuc) and ß2xylose (ß2Xyl) N-glycosylation epitopes in the mammalian Chinese hamster ovary (CHO) cell line. We used directed knockin of plant core fucosylation and xylosylation genes (AtFucTA/AtFucTB and AtXylT) and targeted knockout of endogenous genes for core fucosylation (fut8) and elongation (B4galt1), for establishing CHO cells with plant N-glycosylation capacities. The engineering was evaluated through coexpression of two human therapeutic N-glycoproteins, erythropoietin (EPO) and an immunoglobulin G (IgG) antibody. Full conversion to the plant-type α3Fuc/ß2Xyl bi-antennary agalactosylated N-glycosylation (G0FX) was demonstrated for the IgG1 produced in CHO cells. These results demonstrate that N-glycosylation in mammalian cells is amenable for extensive cross-kingdom engineering and that engineered CHO cells may be used to produce glycoproteins with plant glycosylation.


Assuntos
Engenharia Celular , Epitopos/metabolismo , Eritropoetina/genética , Fucose/metabolismo , Imunoglobulina G/genética , Plantas/química , Xilose/metabolismo , Animais , Células CHO , Cricetulus , Epitopos/química , Eritropoetina/química , Eritropoetina/metabolismo , Fucose/química , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Plantas/metabolismo , Xilose/química
4.
Nat Prod Rep ; 37(7): 919-961, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971193

RESUMO

Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.


Assuntos
Parede Celular/química , Fenóis/química , Plantas/química , Sequência de Carboidratos
5.
BMC Biotechnol ; 19(1): 36, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208390

RESUMO

BACKGROUND: CRISPR/Cas9 is widely used for precise genetic editing in various organisms. CRISPR/Cas9 editing may in many plants be hampered by the presence of complex and high ploidy genomes and inefficient or poorly controlled delivery of the CRISPR/Cas9 components to gamete cells or cells with regenerative potential. Optimized strategies and methods to overcome these challenges are therefore in demand. RESULTS: In this study we investigated the feasibility of improving CRISPR/Cas9 editing efficiency by Fluorescence Activated Cell Sorting (FACS) of protoplasts. We used Agrobacterium infiltration in leaves of Nicotiana benthamiana for delivery of viral replicons for high level expression of gRNAs designed to target two loci in the genome, NbPDS and NbRRA, together with the Cas9 nuclease in fusion with the 2A self-splicing sequence and GFP (Cas9-2A-GFP). Protoplasts isolated from the infiltrated leaves were then subjected to FACS for selection of GFP enriched protoplast populations. This procedure resulted in a 3-5 fold (from 20 to 30% in unsorted to more than 80% in sorted) increase in mutation frequencies as evidenced by restriction enzyme analysis and the Indel Detection by Amplicon Analysis, which allows for high throughput profiling and quantification of the generated mutations. CONCLUSIONS: FACS of protoplasts expressing GFP tagged CRISPR/Cas9, delivered through A. tumefaciens leaf infiltration, facilitated clear CRISPR/Cas9 mediated mutation enrichment in selected protoplast populations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Proteínas de Fluorescência Verde/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Protoplastos/metabolismo , Citometria de Fluxo , Fluorescência , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência , Mutação , Folhas de Planta/citologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Protoplastos/citologia , Nicotiana/citologia , Nicotiana/genética
6.
Proc Natl Acad Sci U S A ; 112(51): 15648-53, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644575

RESUMO

Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intricate interplay with protein phosphorylation and serves as a key sensor of nutrients by linking the hexosamine biosynthetic pathway to cellular signaling. A longstanding conundrum has been how yeast survives without O-GlcNAcylation in light of its similar phosphorylation signaling system. We previously developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines. However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery opens for exploration of the enzymatic machinery that is predicted to regulate the nucleocytoplasmic O-Man glycosylations. It is likely that manipulation of this type of O-Man glycosylation will have wide applications for yeast bioprocessing.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Glicoproteínas/metabolismo , Manose/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Acetilglucosamina/metabolismo , Sequência de Aminoácidos , Glicosilação , Dados de Sequência Molecular , Fosforilação , Proteoma
7.
Front Plant Sci ; 15: 1332150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751837

RESUMO

Mung bean starch is distinguished by its exceptional high amylose content and regulation of starch biosynthesis in leaves and storage tissues, such as seeds, share considerable similarities. Genetic engineering of starch composition and content, requires detailed knowledge of starch biosynthetic gene expression and enzymatic regulation. In this study we applied detailed transcriptomic analyses to unravel the global differential gene expression patterns in mung bean leaves and in seeds during various stages of development. The objective was to identify candidate genes and regulatory mechanisms that may enable generation of desirable seed qualities through the use of genetic engineering. Notable differences in gene expression, in particular low expression of the Protein Targeting to Starch (PTST), starch synthase (SS) 3, and starch branching enzyme1 (SBE1) encoding genes in developing seeds as compared to leaves were evident. These differences were related to starch molecular structures and granule morphologies. Specifically, the starch molecular size distribution at different stages of seed development correlated with the starch biosynthesis gene expression of the SBE1, SS1, granule-bound starch synthases (GBSS) and isoamylase 1 (ISA1) encoding genes. Furthermore, putative hormonal and redox controlled regulation were observed, which may be explained by abscisic acid (ABA) and indole-3-acetic acid (IAA) induced signal transduction, and redox regulation of ferredoxins and thioredoxins, respectively. The morphology of starch granules in leaves and developing seeds were clearly distinguishable and could be correlated to differential expression of SS1. Here, we present a first comprehensive transcriptomic dataset of developing mung bean seeds, and combined these findings may enable generation of genetic engineering strategies of for example starch biosynthetic genes for increasing starch levels in seeds and constitute a valuable toolkit for improving mung bean seed quality.

8.
Food Chem ; 461: 140817, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146682

RESUMO

This study examined multi-scale structural alterations of maize starches varying in amylose content during pasting and gelation, using Rapid Visco Analyser (RVA). At 50 °C, starch granules maintained their morphology with low viscosity. As the temperature increased to 95 °C, helical and crystal structures were destroyed, leading to granule swelling, distortion and porosity, as identified by Wide Angle X-ray Scattering and Fourier Transforms Infrared measurements at 90% moisture. This resulted in increased viscosity and the formation of a loose gel network structure. Subsequently, maintaining the temperature at 95 °C caused a decrease in viscosity as most granules disappeared, forming a reorganized flaky gel structure with larger pores. As the temperature decreased, gel porosity reduced. In high amylose content starch, the viscosity remained low and granules were partially gelatinized since the heating temperature was below the gelatinization temperature. This study is the first to detail starch multilevel structural dynamics during RVA gelatinization.


Assuntos
Amilose , Géis , Amido , Zea mays , Zea mays/química , Amilose/química , Amido/química , Viscosidade , Géis/química , Temperatura Alta
9.
Nat Commun ; 15(1): 5224, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890293

RESUMO

Continued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility. We show that knockout or silencing of Parakletos enhances resistance to oomycete, fungi, bacteria, salt, and drought, whereas its overexpression reduces resistance. In response to biotic stimuli, Parakletos-overexpressing plants exhibit reduced amplitude of reactive oxygen species and Ca2+ signalling, and silencing Parakletos does the opposite. Parakletos homologues have been identified in all major crops. Consecutive years of field trials demonstrate that Parakletos deletion enhances resistance to Phytophthora infestans and increases yield. These findings demark a susceptibility gene, which can be exploited to enhance crop resilience towards abiotic and biotic stresses in a low-input agriculture.


Assuntos
Doenças das Plantas , Proteínas de Plantas , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Secas , Phytophthora infestans , Plantas Geneticamente Modificadas , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Deleção de Genes , Proteômica
10.
Front Genome Ed ; 5: 1247702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719877

RESUMO

In this study, we generated and compared three cytidine base editors (CBEs) tailor-made for potato (Solanum tuberosum), which conferred up to 43% C-to-T conversion of all alleles in the protoplast pool. Earlier, gene-edited potato plants were successfully generated by polyethylene glycol-mediated CRISPR/Cas9 transformation of protoplasts followed by explant regeneration. In one study, a 3-4-fold increase in editing efficiency was obtained by replacing the standard Arabidopsis thaliana AtU6-1 promotor with endogenous potato StU6 promotors driving the expression of the gRNA. Here, we used this optimized construct (SpCas9/StU6-1::gRNA1, target gRNA sequence GGTC4C5TTGGAGC12AAAAC17TGG) for the generation of CBEs tailor-made for potato and tested for C-to-T base editing in the granule-bound starch synthase 1 gene in the cultivar Desiree. First, the Streptococcus pyogenes Cas9 was converted into a (D10A) nickase (nCas9). Next, one of three cytosine deaminases from human hAPOBEC3A (A3A), rat (evo_rAPOBEC1) (rA1), or sea lamprey (evo_PmCDA1) (CDA1) was C-terminally fused to nCas9 and a uracil-DNA glycosylase inhibitor, with each module interspaced with flexible linkers. The CBEs were overall highly efficient, with A3A having the best overall base editing activity, with an average 34.5%, 34.5%, and 27% C-to-T conversion at C4, C5, and C12, respectively, whereas CDA1 showed an average base editing activity of 34.5%, 34%, and 14.25% C-to-T conversion at C4, C5, and C12, respectively. rA1 exhibited an average base editing activity of 18.75% and 19% at C4 and C5 and was the only base editor to show no C-to-T conversion at C12.

11.
Plant Physiol ; 155(1): 246-58, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21075961

RESUMO

Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild type. This may be due to the plant's ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, BayesRelax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated using tuber tissue from wild-type and transgenic potatoes (Solanum tuberosum) that differ in rhamnogalacturonan I side chain structure.


Assuntos
Parede Celular/fisiologia , Solanum tuberosum/citologia , Teorema de Bayes , Fenômenos Biomecânicos/fisiologia , Elasticidade , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Tubérculos/fisiologia , Reologia , Solanum tuberosum/fisiologia , Estresse Mecânico
12.
Carbohydr Polym ; 298: 120136, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241302

RESUMO

Sweet potato was planted at three soil and air temperatures (21, 25 and 28 °C) with the same humidity and light time/intensity. Root tuber starches were isolated, and their multi-scale structures were investigated to reveal the effects of growth temperature on starch properties. Growth temperature did not change the morphology and amylose content of starch, but markedly increased the size of starch from volume-weighted mean diameter 12.2 µm to 17.0 µm. Starch grown at high growth temperature exhibited less A branch-chains and lower branching degree of amylopectin and more B2 and B3+ branch-chains of amylopectin than at low growth temperature. With increasing growth temperature, starch changed from CC-type to CA-type, its relative crystallinity and lamellar peak intensity increased, and the thickness of crystalline and amorphous lamellae did not significantly change. Starch grown at high growth temperature exhibited significantly higher gelatinization temperature than at low growth temperature, but had similar gelatinization enthalpy.


Assuntos
Ipomoea batatas , Amido , Amilopectina/química , Amilose/química , Ipomoea batatas/química , Solo , Amido/química , Temperatura
13.
Front Genome Ed ; 4: 780004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845346

RESUMO

Schemes for efficient regenerationand recovery of shoots from in vitro tissues or single cells, such as protoplasts, are only available for limited numbers of plant species and genotypes and are crucial for establishing gene editing tools on a broader scale in agriculture and plant biology. Growth conditions, including hormone and nutrient composition as well as light regimes in key steps of known regeneration protocols, display significant variations, even between the genotypes within the same species, e.g., potato (Solanum tuberosum). As fresh plant material is a prerequisite for successful shoot regeneration, the plant material often needs to be refreshed for optimizing the growth and physiological state prior to genetic transformation. Utilization of protoplasts has become a more important approach for obtaining transgene-free edited plants by genome editing, CRISPR/Cas9. In this approach, callus formation from protoplasts is induced by one set of hormones, followed by organogenesis, i.e., shoot formation, which is induced by a second set of hormones. The requirements on culture conditions at these key steps vary considerably between the species and genotypes, which often require quantitative adjustments of medium compositions. In this mini-review, we outline the protocols and notes for clonal regeneration and cultivation from single cells, particularly protoplasts in potato and rapeseed. We focus mainly on different hormone treatment schemes and highlight the importance of medium compositions, e.g., sugar, nutrient, and light regimes as well as culture durations at the key regeneration steps. We believe that this review would provide important information and hints for establishing efficient regeneration strategies from other closely related and broad-leaved plant species in general.

15.
Front Plant Sci ; 12: 645219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815452

RESUMO

A wide range of proteins with diverse functions in development, defense, and stress responses are O-arabinosylated at hydroxyprolines (Hyps) within distinct amino acid motifs of continuous stretches of Hyps, as found in the structural cell wall extensins, or at non-continuous Hyps as, for example, found in small peptide hormones and a variety of plasma membrane proteins involved in signaling. Plant O-glycosylation relies on hydroxylation of Prolines to Hyps in the protein backbone, mediated by prolyl-4-hydroxylase (P4H) which is followed by O-glycosylation of the Hyp C4-OH group by either galactosyltransferases (GalTs) or arabinofuranosyltranferases (ArafTs) yielding either Hyp-galactosylation or Hyp-arabinosylation. A subset of the P4H enzymes with putative preference to hydroxylation of continuous prolines and presumably all ArafT enzymes needed for synthesis of the substituted arabinose chains of one to four arabinose units, have been identified and functionally characterized. Truncated root-hair phenotype is one common denominator of mutants of Hyp formation and Hyp-arabinosylation glycogenes, which act on diverse groups of O-glycosylated proteins, e.g., the small peptide hormones and cell wall extensins. Dissection of different substrate derived effects may not be regularly feasible and thus complicate translation from genotype to phenotype. Recently, lack of proper arabinosylation on arabinosylated proteins has been shown to influence their transport/fate in the secretory pathway, hinting to an additional layer of functionality of O-arabinosylation. Here, we provide an update on the prevalence and types of O-arabinosylated proteins and the enzymatic machinery responsible for their modifications.

16.
Sci Rep ; 11(1): 4487, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627728

RESUMO

The use of pathogen-resistant cultivars is expected to increase yield and decrease fungicide use in agriculture. However, in potato breeding, increased resistance obtained via resistance genes (R-genes) is hampered because R-gene(s) are often specific for a pathogen race and can be quickly overcome by the evolution of the pathogen. In parallel, susceptibility genes (S-genes) are important for pathogenesis, and loss of S-gene function confers increased resistance in several plants, such as rice, wheat, citrus and tomatoes. In this article, we present the mutation and screening of seven putative S-genes in potatoes, including two DMR6 potato homologues. Using a CRISPR/Cas9 system, which conferred co-expression of two guide RNAs, tetra-allelic deletion mutants were generated and resistance against late blight was assayed in the plants. Functional knockouts of StDND1, StCHL1, and DMG400000582 (StDMR6-1) generated potatoes with increased resistance against late blight. Plants mutated in StDND1 showed pleiotropic effects, whereas StDMR6-1 and StCHL1 mutated plants did not exhibit any growth phenotype, making them good candidates for further agricultural studies. Additionally, we showed that DMG401026923 (here denoted StDMR6-2) knockout mutants did not demonstrate any increased late blight resistance, but exhibited a growth phenotype, indicating that StDMR6-1 and StDMR6-2 have different functions. To the best of our knowledge, this is the first report on the mutation and screening of putative S-genes in potatoes, including two DMR6 potato homologues.


Assuntos
Sistemas CRISPR-Cas/genética , Resistência à Doença/genética , Mutação/genética , Solanum tuberosum/genética , Citrus/genética , Edição de Genes/métodos , Solanum lycopersicum/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
17.
Front Genome Ed ; 3: 795644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35128523

RESUMO

Potato, Solanum tuberosum is a highly diverse tetraploid crop. Elite cultivars are extremely heterozygous with a high prevalence of small length polymorphisms (indels) and single nucleotide polymorphisms (SNPs) within and between cultivars, which must be considered in CRISPR/Cas gene editing strategies and designs to obtain successful gene editing. In the present study, in-depth sequencing of the gene encoding glucan water dikinase (GWD) 1 and the downy mildew resistant 6 (DMR6-1) genes in the potato cultivars Saturna and Wotan, respectively, revealed both indels and a 1.3-2.8 higher SNP prevalence when compared to the heterozygous diploid RH genome sequence as expected for a tetraploid compared to a diploid. This complicates guide RNA (gRNA) and diagnostic PCR designs. At the same time, high editing efficiencies at the cell pool (protoplast) level are pivotal for achieving full allelic knock-out in tetraploids. Furthermore, high editing efficiencies reduce the downstream cumbersome and delicate ex-plant regeneration. Here, CRISPR/Cas ribonucleoprotein particles (RNPs) were delivered transiently to protoplasts by polyethylene glycol (PEG) mediated transformation. For each of GWD1 and the DMR6-1, 6-10 gRNAs were designed to target regions comprising the 5' and the 3' end of the two genes. Similar to other studies including several organisms, editing efficiency of the individual RNPs varied significantly, and some generated specific indel patterns. RNP's targeting the 5' end of GWD1 yielded significantly higher editing efficiency as compared to targeting the 3' end. For DMR6-1, such an effect was not seen. Simultaneously targeting each of the two target regions with two RNPs (multiplexing) yielded a clear positive synergistic effect on the total editing when targeting the 3' end of the GWD1 gene only. Multiplexing of the two genes, residing on different chromosomes, yielded no or a slightly negative effect on editing from the single or combined gRNA/RNPs. These initial findings may instigate much larger studies needed for facilitating and optimizing precision breeding in plants.

18.
Glycoconj J ; 26(9): 1235-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19455420

RESUMO

Two Arabidopsis xylosyltransferases, designated RGXT1 and RGXT2, were recently expressed in Baculovirus transfected insect cells and by use of the free sugar assay shown to catalyse transfer of D-xylose from UDP-alpha-D-xylose to L-fucose and derivatives hereof. We have now examined expression of RGXT1 and RGXT2 in Pichia pastoris and compared the two expression systems. Pichia transformants, expressing soluble, secreted forms of RGXT1 and RGXT2 with an N- or C-terminal Flag-tag, accumulated recombinant, hyper-glycosylated proteins at levels between 6 and 16 mg protein * L(-1) in the media fractions. When incubated with 0.5 M L-fucose and UDP-D-xylose all four RGXT1 and RGXT2 variants catalyzed transfer of D-xylose onto L-fucose with estimated turnover numbers between 0.15 and 0.3 sec(-1), thus demonstrating that a free C-terminus is not required for activity. N- and O-glycanase treatment resulted in deglycosylation of all four proteins, and this caused a loss of xylosyltransferase activity for the C-terminally but not the N-terminally Flag-tagged proteins. The RGXT1 and RGXT2 proteins displayed an absolute requirement for Mn(2+) and were active over a broad pH range. Simple dialysis of media fractions or purification on phenyl Sepharose columns increased enzyme activities 2-8 fold enabling direct verification of the product formed in crude assay mixtures using electrospray ionization mass spectrometry. Pichia expressed and dialysed RGXT variants yielded activities within the range 0.011 to 0.013 U (1 U = 1 nmol conversion of substrate * min(-1) * microl medium(-1)) similar to those of RGXT1 and RGXT2 expressed in Baculovirus transfected insect Sf9 cells. In summary, the data presented suggest that Pichia is an attractive host candidate for expression of plant glycosyltransferases.


Assuntos
Arabidopsis/citologia , Arabidopsis/enzimologia , Membrana Celular/enzimologia , Parede Celular/enzimologia , Ensaios Enzimáticos/métodos , Glicosiltransferases/metabolismo , Pichia/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Cátions Bivalentes/farmacologia , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Glicoproteínas/metabolismo , Glicosilação/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Immunoblotting , Insetos/citologia , Dados de Sequência Molecular , Pichia/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray
19.
Cell Surf ; 5: 100033, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743148

RESUMO

Cotton fibre provides a unicellular model system for studying cell expansion and secondary cell wall deposition. Mature cotton fibres are mainly composed of cellulose while the walls of developing fibre cells contain a variety of polysaccharides and proteoglycans required for cell expansion. This includes hydroxyproline-rich glycoproteins (HRGPs) comprising the subgroup, extensins. In this study, extensin occurrence in cotton fibres was assessed using carbohydrate immunomicroarrays, mass spectrometry and monosaccharide profiling. Extensin amounts in three species appeared to correlate with fibre quality. Fibre cell expression profiling of the four cotton cultivars, combined with extensin arabinoside chain length measurements during fibre development, demonstrated that arabinoside side-chain length is modulated during development. Implications and mechanisms of extensin side-chain length dynamics during development are discussed.

20.
Sci Rep ; 9(1): 17715, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776399

RESUMO

CRISPR/Cas9 editing efficacies in tetraploid potato were highly improved through the use of endogenous potato U6 promoters. Highly increased editing efficiencies in the Granular Bound Starch Synthase gene at the protoplast level were obtained by replacement of the Arabidopsis U6 promotor, driving expression of the CRISPR component, with endogenous potato U6 promotors. This translated at the ex-plant level into 35% full allelic gene editing. Indel Detection Amplicon Analysis was established as an efficient tool for fast assessment of gene editing in complex genomes, such as potato. Together, this warrants significant reduction of laborious cell culturing, ex-plant regeneration and screening procedures of plants with high complexity genomes.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Melhoramento Vegetal/métodos , Solanum tuberosum/genética , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA