Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(19): 9380-9389, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004059

RESUMO

Although channelrhodopsin (ChR) is a widely applied light-activated ion channel, important properties such as light adaptation, photocurrent inactivation, and alteration of the ion selectivity during continuous illumination are not well understood from a molecular perspective. Herein, we address these open questions using single-turnover electrophysiology, time-resolved step-scan FTIR, and Raman spectroscopy of fully dark-adapted ChR2. This yields a unifying parallel photocycle model integrating now all so far controversial discussed data. In dark-adapted ChR2, the protonated retinal Schiff base chromophore (RSBH+) adopts an all-trans,C=N-anti conformation only. Upon light activation, a branching reaction into either a 13-cis,C=N-anti or a 13-cis,C=N-syn retinal conformation occurs. The anti-cycle features sequential H+ and Na+ conductance in a late M-like state and an N-like open-channel state. In contrast, the 13-cis,C=N-syn isomer represents a second closed-channel state identical to the long-lived P480 state, which has been previously assigned to a late intermediate in a single-photocycle model. Light excitation of P480 induces a parallel syn-photocycle with an open-channel state of small conductance and high proton selectivity. E90 becomes deprotonated in P480 and stays deprotonated in the C=N-syn cycle. Deprotonation of E90 and successive pore hydration are crucial for late proton conductance following light adaptation. Parallel anti- and syn-photocycles now explain inactivation and ion selectivity changes of ChR2 during continuous illumination, fostering the future rational design of optogenetic tools.


Assuntos
Cátions/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Cátions/química , Channelrhodopsins/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Células HEK293 , Humanos , Isomerismo , Luz , Conformação Proteica , Prótons , Retinaldeído/química
2.
Acta Neuropathol ; 142(3): 423-448, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34115198

RESUMO

Various post-translationally modified (PTM) proteoforms of alpha-synuclein (aSyn)-including C-terminally truncated (CTT) and Serine 129 phosphorylated (Ser129-p) aSyn-accumulate in Lewy bodies (LBs) in different regions of the Parkinson's disease (PD) brain. Insight into the distribution of these proteoforms within LBs and subcellular compartments may aid in understanding the orchestration of Lewy pathology in PD. We applied epitope-specific antibodies against CTT and Ser129-p aSyn proteoforms and different aSyn domains in immunohistochemical multiple labelings on post-mortem brain tissue from PD patients and non-neurological, aged controls, which were scanned using high-resolution 3D multicolor confocal and stimulated emission depletion (STED) microscopy. Our multiple labeling setup highlighted a consistent onion skin-type 3D architecture in mature nigral LBs in which an intricate and structured-appearing framework of Ser129-p aSyn and cytoskeletal elements encapsulates a core enriched in CTT aSyn species. By label-free CARS microscopy we found that enrichments of proteins and lipids were mainly localized to the central portion of nigral aSyn-immunopositive (aSyn+) inclusions. Outside LBs, we observed that 122CTT aSyn+ punctae localized at mitochondrial membranes in the cytoplasm of neurons in PD and control brains, suggesting a physiological role for 122CTT aSyn outside of LBs. In contrast, very limited to no Ser129-p aSyn immunoreactivity was observed in brains of non-neurological controls, while the alignment of Ser129-p aSyn in a neuronal cytoplasmic network was characteristic for brains with (incidental) LB disease. Interestingly, Ser129-p aSyn+ network profiles were not only observed in neurons containing LBs but also in neurons without LBs particularly in donors at early disease stage, pointing towards a possible subcellular pathological phenotype preceding LB formation. Together, our high-resolution and 3D multicolor microscopy observations in the post-mortem human brain provide insights into potential mechanisms underlying a regulated LB morphogenesis.


Assuntos
Química Encefálica , Doença de Parkinson/metabolismo , Frações Subcelulares/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Bancos de Espécimes Biológicos , Citoplasma/patologia , Citoplasma/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Corpos de Inclusão/patologia , Corpos de Inclusão/ultraestrutura , Corpos de Lewy/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Neurônios/patologia , Neurônios/ultraestrutura , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/genética
3.
FASEB J ; 32(3): 1265-1280, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101223

RESUMO

Cystathionine ß-synthase-deficient homocystinuria (HCU) is a poorly understood, life-threatening inborn error of sulfur metabolism. Analysis of hepatic glutathione (GSH) metabolism in a mouse model of HCU demonstrated significant depletion of cysteine, GSH, and GSH disulfide independent of the block in trans-sulfuration compared with wild-type controls. HCU induced the expression of the catalytic and regulatory subunits of γ-glutamyl ligase, GSH synthase (GS), γ-glutamyl transpeptidase 1, 5-oxoprolinase (OPLAH), and the GSH-dependent methylglyoxal detoxification enzyme, glyoxalase-1. Multiple components of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant-response regulatory axis were induced without any detectable activation of Nrf2. Metabolomic analysis revealed the accumulation of multiple γ-glutamyl amino acids and that plasma ophthalmate levels could serve as a noninvasive marker for hepatic redox stress. Neither cysteine, nor betaine treatment was able to reverse the observed enzyme inductions. Taurine treatment normalized the expression levels of γ-glutamyl ligase C/M, GS, OPLAH, and glyoxalase-1, and reversed HCU-induced deficits in protein glutathionylation by acting to double GSH levels relative to controls. Collectively, our data indicate that the perturbation of the γ-glutamyl cycle could contribute to multiple sequelae in HCU and that taurine has significant therapeutic potential for both HCU and other diseases for which GSH depletion is a critical pathogenic factor.-Maclean, K. N., Jiang, H., Aivazidis, S., Kim, E., Shearn, C. T., Harris, P. S., Petersen, D. R., Allen, R. H., Stabler, S. P., Roede, J. R. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism.


Assuntos
Aminobutiratos/metabolismo , Homocistinúria/metabolismo , Fígado/metabolismo , Aldeído Pirúvico/metabolismo , Compostos de Sulfidrila/metabolismo , Ácidos Sulfínicos/metabolismo , Taurina/farmacologia , Aminoácidos/metabolismo , Animais , Cistationina beta-Sintase/metabolismo , Modelos Animais de Doenças , Feminino , Homocistinúria/tratamento farmacológico , Homocistinúria/patologia , Fígado/efeitos dos fármacos , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , gama-Glutamiltransferase/metabolismo
4.
Am J Pathol ; 187(2): 418-430, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27998724

RESUMO

We established a mouse model of developmental nonalcoholic steatohepatitis (NASH) by feeding a high polyunsaturated fat liquid diet to female glutathione-S-transferase 4-4 (Gsta4-/-)/peroxisome proliferator activated receptor α (Ppara-/-) double knockout 129/SvJ mice for 12 weeks from weaning. We used it to probe the importance of lipid peroxidation in progression of NASH beyond simple steatosis. Feeding Gsta4-/-/Ppara-/- double-knockout (dKO) mice liquid diets containing corn oil resulted in a percentage fat-dependent increase in steatosis and necroinflammatory injury (P < 0.05). Increasing fat to 70% from 35% resulted in increases in formation of 4-hydroxynonenal protein adducts accompanied by evidence of stellate cell activation, matrix remodeling, and fibrosis (P < 0.05). Comparison of dKO mice with wild-type (Wt) and single knockout mice revealed additive effects of Gsta4-/- and Ppara-/- silencing on steatosis, 4-hydroxynonenal adduct formation, oxidative stress, serum alanine amino transferase, expression of tumor necrosis factor alpha, Il6, interferon mRNA, and liver pathology (P < 0.05). Induction of Cyp2e1 protein by high-fat diet was suppressed in Gsta4-/- and dKO groups (P < 0.05). The dKO mice had similar levels of markers of stellate cell activation and matrix remodeling as Ppara-/- single KO mice. These data suggest that lipid peroxidation products play a role in progression of liver injury to steatohepatitis in NASH produced by high-fat feeding during development but appear less important in development of fibrosis.


Assuntos
Glutationa Transferase/deficiência , Peroxidação de Lipídeos/fisiologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Western Blotting , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Fígado/patologia , Camundongos , Camundongos Knockout , PPAR alfa/deficiência , Reação em Cadeia da Polimerase , Transcriptoma
5.
J Exp Biol ; 221(Pt 13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29712747

RESUMO

The louse fly Crataerina pallida is an obligate blood-sucking ectoparasite of the common swift Apus apus As a result of reduction of the wings, C. pallida is unable to fly; thus, an effective and reliable attachment to their host's plumage is of utmost importance. The attachment system of C. pallida shows several modifications in comparison to that of other calyptrate flies, notably the large tridentate claws and the dichotomously shaped setae located on the pulvilli. Based on data from morphological analysis, confocal laser scanning microscopy, cryo-scanning electron microscopy and attachment force experiments performed on native (feathers) as well as artificial substrates (glass, epoxy resin and silicone rubber), we showed that the entire attachment system is highly adapted to the fly's lifestyle as an ectoparasite. The claws in particular are the main contributor to strong attachment to the host. Resulting attachment forces on feathers make it impossible to detach C. pallida without damage to the feathers or to the legs of the louse fly itself. Well-developed pulvilli are responsible for the attachment to smooth surfaces. Both dichotomously shaped setae and high setal density explain high attachment forces observed on smooth substrates. For the first time, we demonstrate a material gradient within the setae, with soft, resilin-dominated apical tips and stiff, more sclerotized bases in Diptera. The empodium seems not to be directly involved in the attachment process, but it might operate as a cleaning device and may be essential to maintain the functionality of the entire attachment system.


Assuntos
Aves/parasitologia , Dípteros/anatomia & histologia , Plumas/parasitologia , Interações Hospedeiro-Parasita , Animais , Dípteros/fisiologia , Feminino , Masculino
6.
Alcohol Clin Exp Res ; 42(7): 1192-1205, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29708596

RESUMO

BACKGROUND: Glutathione S-transferase A4-4 (GSTA4) is a key enzyme for removal of toxic lipid peroxidation products such as 4-hydroxynonenal (4-HNE). In this study, we examined the potential role of GSTA4 on protein carbonylation and progression of alcoholic liver disease by examining the development of liver injury in male wild-type (WT) SV/J mice and SV/J mice lacking functional GSTA4 (GSTA4-/- mice). METHODS: Adult male WT and GSTA4-/- mice were fed chow (N = 10 to 12) or high-fat Lieber-DeCarli liquid diets containing up to 28% calories as ethanol (EtOH) (N = 18 to 20) for 116 days. At the end of the study, half of the EtOH-fed mice were acutely challenged with an EtOH binge (3 g/kg given intragastrically) 12 hours before sacrifice. Carbonylation of liver proteins was assessed by immunohistochemical staining for 4-HNE adduction and by comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) of purified carbonylated proteins. RESULTS: Chronic EtOH intake significantly increased hepatic 4-HNE adduction and protein carbonylation, including carbonylation of ribosomal proteins. EtOH intake also resulted in steatosis and increased serum alanine aminotransferase. Hepatic infiltration with B cells, T cells, and neutrophils and mRNA expression of pro-inflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)γ was modest in WT mice. However, an EtOH binge increased hepatic necrosis, hepatic cell proliferation, and expression of TNFα mRNA (p < 0.05). EtOH treatment of GSTA4-/- mice increased B-cell infiltration and increased mRNA expression of TNFα and IFNγ and of matrix remodeling markers MMP9, MMP13, and Col1A1 (p < 0.05). GSTA4-/- mice exhibited panlobular rather than periportal distribution of 4-HNE-adducted proteins and increased overall 4-HNE staining after EtOH binge. Comprehensive LC-MS of carbonylated proteins identified 1,022 proteins of which 189 were unique to the GSTA4-/- group. CONCLUSIONS: These data suggest long-term adaptation to EtOH in WT mice does not occur in GSTA4-/- mice. Products of lipid peroxidation appear to play a role in inflammatory responses due to EtOH. And EtOH effects on B-cell infiltration and autoimmune responses may be secondary to formation of carbonyl adducts.


Assuntos
Etanol/toxicidade , Glutationa Transferase/deficiência , Glutationa Transferase/genética , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Carbonilação Proteica/fisiologia , Animais , Etanol/administração & dosagem , Glutationa Transferase/química , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Carbonilação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
7.
Exp Mol Pathol ; 104(1): 1-8, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29180269

RESUMO

OBJECTIVE: Primary Sclerosing Cholangitis (PSC) is a chronic cholestatic liver disease that is characterized by severe peri-biliary tract inflammation and fibrosis, elevated oxidative stress and hepatocellular injury. A hallmark of PSC patients is the concurrent diagnosis of Inflammatory Bowel Disease occurring in approximately 70%-80% of PSC patients (PSC/IBD). The objective of this study was to determine the impact of end stage PSC/IBD on cellular antioxidant responses and the formation of protein carbonylation. METHODS: Using hepatic tissue and whole cell extracts isolated from age-matched healthy humans and patients diagnosed with end stage PSC/IBD, overall inflammation, oxidative stress, and protein carbonylation were assessed by Western blotting, and immunohistochemistry. RESULTS: Increased immunohistochemical staining for CD3+ (lymphocyte), CD68 (Kupffer cell) and myeloperoxidase (neutrophil) colocalized with the extensive Picrosirius red stained fibrosis confirming the inflammatory aspect of PSC. Importantly, the increased inflammation also colocalized with elevated periportal post-translational modification by the reactive aldehydes 4-HNE, MDA and acrolein. 4-HNE, MDA and acrolein IHC all displayed a significant component in hepatocytes adjacent to fibrotic regions. Furthermore, acrolein was also elevated within the nuclei of periportal inflammatory cells whereas MDA staining was increased in hepatocytes across the lobule. Prussian Blue staining, when compared to the positive controls (ALD, NASH), did not display any evidence of iron accumulation in PSC/IBD livers. Western analysis of PSC/IBD anti-oxidant responses revealed elevated expression of SOD2, GSTπ as well as upregulation of Akt Ser473 phosphorylation. In contrast, expression of GSTµ, GSTA4, catalase, Gpx1 and Hsp70 were suppressed. These data were further supported by a significant decrease in measured GST activity. Dysregulation of anti-oxidant responses in the periportal region of the liver was supported by elevated SOD2 and GSTπ IHC signals in periportal hepatocytes and cholangiocytes. Expression of the Nrf2-regulated proteins HO-1, NAD(P)H quinone reductase (NQO1) and Gpx1 was primarily localized to macrophages. In contrast, catalase staining decreased within periportal hepatocytes and was not evident within cholangiocytes. CONCLUSIONS: Results herein provide additional evidence that cholestasis induces significant increases in periportal oxidative stress and suggest that there are significant differences in the cellular and subcellular generation of reactive aldehydes formed during cholestatic liver injury. Furthermore, these data suggest that anti-oxidant responses are dysregulated during end-stage PSC/IBD supporting pathological data. This work was funded by NIH5R37AA009300-22 D.R.P.


Assuntos
Colangite Esclerosante/metabolismo , Colangite Esclerosante/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Adulto , Antioxidantes/metabolismo , Antioxidantes/fisiologia , Catalase/fisiologia , Colestase/fisiopatologia , Feminino , Humanos , Inflamação/patologia , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/fisiologia , Regulação para Cima
8.
Exp Mol Pathol ; 105(1): 32-36, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29852184

RESUMO

OBJECTIVE: Primary Sclerosing Cholangitis (PSC) is a severe cholestatic liver disease characterized by progressive peri-biliary tract inflammation, elevated oxidative stress and hepatocellular injury. A hallmark of PSC patients is the concurrent diagnosis of Inflammatory Bowel Disease occurring in approximately 70%-80% of PSC patients (PSC/IBD). We previously reported dysregulation of key anti-oxidant pathways in PSC/IBD. The objective of this study was to expand previous data by examining the abundance of thioredoxins (Trx) in PSC/IBD. METHODS: Using hepatic tissue and whole cell extracts isolated from age-matched healthy humans and patients diagnosed with end stage PSC/IBD, the protein abundance of thioredoxin, thioredoxin reductase (TrxR1), and their downstream substrates peroxiredoxins was assessed. RESULTS: Western blot analyses of thioredoxin and peroxiredoxin abundance revealed significant increases in abundance of Trx1 and TrxR1 whereas expression of thioredoxin-interacting protein was significantly decreased in PSC/IBD. Concurrently, abundance of cytosolic peroxiredoxins was not significantly impacted. The abundance of mitochondrial Trx2, along with peroxiredoxins 3, 5 and 6 were significantly decreased by concurrent PSC/IBD. Histological staining of Trx1/TrxR1 revealed elevated nuclear Trx1 and TrxR1 staining within cholangiocytes as well as an overall periportal increase in expression in PSC/IBD. An examination of additional anti-oxidant responses reveal suppression of gamma-glutamylcysteine synthetase and heme oxygenase (HO-1) whereas expression of the protein chaperone glucose regulated protein 78 increased suggesting elevated cellular stress in PSC/IBD. CONCLUSIONS: Results herein suggest that in addition to severe dysregulation of anti-oxidant responses, cholestasis impacts both cytosolic/nuclear (Trx1) as well as mitochondrial (Trx2) redox signaling and control pathways.


Assuntos
Colestase/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Peroxirredoxinas/genética , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/genética , Estudos de Casos e Controles , Colestase/complicações , Colestase/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/genética , Fígado/metabolismo , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Transdução de Sinais , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo
9.
J Biol Chem ; 289(22): 15449-62, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24722988

RESUMO

The production of reactive aldehydes including 4-hydroxy-2-nonenal (4-HNE) is a key component of the pathogenesis in a spectrum of chronic inflammatory hepatic diseases including alcoholic liver disease (ALD). One consequence of ALD is increased oxidative stress and altered ß-oxidation in hepatocytes. A major regulator of ß-oxidation is 5' AMP protein kinase (AMPK). In an in vitro cellular model, we identified AMPK as a direct target of 4-HNE adduction resulting in inhibition of both H2O2 and 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced downstream signaling. By employing biotin hydrazide capture, it was confirmed that 4-HNE treatment of cells resulted in carbonylation of AMPKα/ß, which was not observed in untreated cells. Using a murine model of alcoholic liver disease, treatment with high concentrations of ethanol resulted in an increase in phosphorylated as well as carbonylated AMPKα. Despite increased AMPK phosphorylation, there was no significant change in phosphorylation of acetyl CoA carboxylase. Mass spectrometry identified Michael addition adducts of 4-HNE on Cys(130), Cys(174), Cys(227), and Cys(304) on recombinant AMPKα and Cys(225) on recombinant AMPKß. Molecular modeling analysis of identified 4-HNE adducts on AMPKα suggest that inhibition of AMPK occurs by steric hindrance of the active site pocket and by inhibition of hydrogen peroxide induced oxidation. The observed inhibition of AMPK by 4-HNE provides a novel mechanism for altered ß-oxidation in ALD, and these data demonstrate for the first time that AMPK is subject to regulation by reactive aldehydes in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aldeídos/metabolismo , Etanol/farmacologia , Fígado Gorduroso/enzimologia , Hepatopatias Alcoólicas/enzimologia , Proteínas Quinases Ativadas por AMP/química , Aldeídos/farmacologia , Animais , Depressores do Sistema Nervoso Central/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Modelos Animais de Doenças , Células Hep G2 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Químicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
Am J Physiol Gastrointest Liver Physiol ; 308(5): G403-15, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25501545

RESUMO

To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male 129/SvJ mice (wild-type, WT) and glutathione S-transferase A4-4-null (GSTA4-/-) mice for 40 days. GSTA4-/- mice were crossed with peroxisome proliferator-activated receptor-α-null mice (PPAR-α-/-), and the effects of EtOH in the resulting double knockout (dKO) mice were compared with the other strains. EtOH increased lipid peroxidation in all except WT mice (P < 0.05). Increased steatosis and mRNA expression of the inflammatory markers CXCL2, tumor necrosis factor-α (TNF-α), and α-smooth muscle actin (α-SMA) were observed in EtOH GSTA4-/- compared with EtOH WT mice (P < 0.05). EtOH PPAR-α-/- mice had increased steatosis, serum alanine aminotransferase (ALT), and hepatic CD3+ T cell populations and elevated mRNA encoding CD14, CXCL2, TNF-α, IL-6, CD138, transforming growth factor-ß, platelet-derived growth factor receptor-ß (PDGFR-ß), matrix metalloproteinase (MMP)-9, MMP-13, α-SMA, and collagen type 1 compared with EtOH WT mice. EtOH-fed dKO mice displayed elevation of periportal hepatic 4-hydroxynonenal adducts and serum antibodies against malondialdehyde adducts compared with EtOH feeding of GSTA4-/-, PPAR-α-/-, and WT mice (P < 0.05). ALT was higher in EtOH dKO mice compared with all other groups (P < 0.001). EtOH-fed dKO mice displayed elevated mRNAs for TNF-α and CD14, histological evidence of fibrosis, and increased PDGFR, MMP-9, and MMP-13 mRNAs compared with the EtOH GSTA4-/- or EtOH PPAR-α-/- genotype (P < 0.05). These findings demonstrate the central role lipid peroxidation plays in mediating progression of alcohol-induced necroinflammatory liver injury, stellate cell activation, matrix remodeling, and fibrosis.


Assuntos
Aldeídos/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos , Hepatopatias Alcoólicas/metabolismo , PPAR alfa/metabolismo , Actinas/genética , Actinas/metabolismo , Alanina Transaminase/sangue , Aldeídos/imunologia , Animais , Anticorpos/sangue , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fibrose/metabolismo , Deleção de Genes , Glutationa Transferase/genética , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/imunologia , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , PPAR alfa/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Anal Chem ; 87(14): 7297-304, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26075314

RESUMO

Predictions about the cellular efficacy of drugs tested in vitro are usually based on the measured responses of a few proteins or signal transduction pathways. However, cellular proteins are highly coupled in networks, and observations of single proteins may not adequately reflect the in vivo cellular response to drugs. This might explain some large discrepancies between in vitro drug studies and drug responses observed in patients. We present a novel in vitro marker-free approach that enables detection of cellular responses to a drug. We use Raman spectral imaging to measure the effect of the epidermal growth factor receptor (EGFR) inhibitor panitumumab on cell lines expressing wild-type Kirsten-Ras (K-Ras) and oncogenic K-Ras mutations. Oncogenic K-Ras mutation blocks the response to anti-EGFR therapy in patients, but this effect is not readily observed in vitro. The Raman studies detect large panitumumab-induced differences in vitro in cells harboring wild-type K-Ras as seen in A in red but not in cells with K-Ras mutations as seen in B; these studies reflect the observed patient outcomes. However, the effect is not observed when extracellular-signal-regulated kinase phosphorylation is monitored. The Raman spectra show for cells with wild-type K-Ras alterations based on the responses to panitumumab. The subcellular component with the largest spectral response to panitumumab was lipid droplets, but this effect was not observed when cells harbored K-Ras mutations. This study develops a noninvasive, label-free, in vitro vibrational spectroscopic test to determine the integral physiologically relevant drug response in cell lines. This approach opens a new field of patient-centered drug testing that could deliver superior patient therapies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Anticorpos Monoclonais/química , Antineoplásicos/química , Receptores ErbB/química , Humanos , Análise Multivariada , Mutação , Panitumumabe , Análise Espectral Raman , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Proteínas ras/genética
12.
Analyst ; 140(7): 2360-8, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25679809

RESUMO

A major promise of Raman microscopy is the label-free detailed recognition of cellular and subcellular structures. To this end, identifying colocalization patterns between Raman spectral images and fluorescence microscopic images is a key step to annotate subcellular components in Raman spectroscopic images. While existing approaches to resolve subcellular structures are based on fluorescence labeling, we propose a combination of a colocalization scheme with subsequent training of a supervised classifier that allows label-free resolution of cellular compartments. Our colocalization scheme unveils statistically significant overlapping regions by identifying correlation between the fluorescence color channels and clusters from unsupervised machine learning methods like hierarchical cluster analysis. The colocalization scheme is used as a pre-selection to gather appropriate spectra as training data. These spectra are used in the second part as training data to establish a supervised random forest classifier to automatically identify lipid droplets and nucleus. We validate our approach by examining Raman spectral images overlaid with fluorescence labelings of different cellular compartments, indicating that specific components may indeed be identified label-free in the spectral image. A Matlab implementation of our colocalization software is available at .


Assuntos
Espaço Intracelular/metabolismo , Microscopia de Fluorescência/métodos , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Gotículas Lipídicas/metabolismo
13.
Adv Exp Med Biol ; 815: 173-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25427907

RESUMO

The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a phosphatidylinositol (PtdIns) phosphatase that regulates Akt activation via PtdIns 3 kinase. Changes in PTEN expression and/or activity have been identified in a variety of chronic hepatocellular disorders including obesity, NAFLD, NASH, and alcoholism. In cancer biology, PTEN is frequently mutated or deleted in a wide variety of tumors. Mutations, decreased promoter activity, and decreased expression in PTEN are frequently identified in patients with hepatocellular carcinoma. While the majority of research on PTEN concerns obesity and NASH, PTEN clearly has a role in hepatic insulin sensitivity and in the development of steatosis during chronic alcoholism. Yet, in chronic alcoholics and HCC, very little is known concerning PTEN mutation/deletion or low PTEN expression. This review is focused on an overview of the current knowledge on molecular mechanisms of dysregulation of PTEN expression/activity in the liver and their relationship to development of ethanol-induced hepatocellular damage and cancer.


Assuntos
Alcoolismo/complicações , Carcinoma Hepatocelular/induzido quimicamente , Hepatopatias Alcoólicas/etiologia , Neoplasias Hepáticas/induzido quimicamente , PTEN Fosfo-Hidrolase/fisiologia , Animais , Humanos , Fígado/metabolismo , Processamento de Proteína Pós-Traducional
14.
Pharmacol Rev ; 64(3): 520-39, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544865

RESUMO

Aldehyde dehydrogenases (ALDHs) belong to a superfamily of enzymes that play a key role in the metabolism of aldehydes of both endogenous and exogenous derivation. The human ALDH superfamily comprises 19 isozymes that possess important physiological and toxicological functions. The ALDH1A subfamily plays a pivotal role in embryogenesis and development by mediating retinoic acid signaling. ALDH2, as a key enzyme that oxidizes acetaldehyde, is crucial for alcohol metabolism. ALDH1A1 and ALDH3A1 are lens and corneal crystallins, which are essential elements of the cellular defense mechanism against ultraviolet radiation-induced damage in ocular tissues. Many ALDH isozymes are important in oxidizing reactive aldehydes derived from lipid peroxidation and thereby help maintain cellular homeostasis. Increased expression and activity of ALDH isozymes have been reported in various human cancers and are associated with cancer relapse. As a direct consequence of their significant physiological and toxicological roles, inhibitors of the ALDH enzymes have been developed to treat human diseases. This review summarizes known ALDH inhibitors, their mechanisms of action, isozyme selectivity, potency, and clinical uses. The purpose of this review is to 1) establish the current status of pharmacological inhibition of the ALDHs, 2) provide a rationale for the continued development of ALDH isozyme-selective inhibitors, and 3) identify the challenges and potential therapeutic rewards associated with the creation of such agents.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos , Aldeído Desidrogenase/química , Animais , Sítios de Ligação , Ensaios Clínicos como Assunto , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Modelos Moleculares , Estrutura Molecular , Especificidade por Substrato
15.
Biophys J ; 106(9): 1910-20, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24806923

RESUMO

Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the "random forest" ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells.


Assuntos
Imagem Molecular/métodos , Organelas/metabolismo , Análise Espectral Raman/métodos , Automação , Linhagem Celular Tumoral , Análise por Conglomerados , Estudos de Viabilidade , Humanos , Neoplasias Pancreáticas/patologia
16.
Alcohol Clin Exp Res ; 38(12): 2896-906, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25581647

RESUMO

BACKGROUND: Chronic ethanol (EtOH) administration to experimental animals induces hepatic oxidative stress and up-regulates mitochondrial biogenesis. The mechanisms by which chronic EtOH up-regulates mitochondrial biogenesis have not been fully explored. In this work, we hypothesized that oxidative stress is a factor that triggers mitochondrial biogenesis after chronic EtOH feeding. If our hypothesis is correct, co-administration of antioxidants should prevent up-regulation of mitochondrial biogenesis genes. METHODS: Rats were fed an EtOH-containing diet intragastrically by total enteral nutrition for 150 days, in the absence or presence of the antioxidant N-acetylcysteine (NAC) at 1.7 g/kg/d; control rats were administered isocaloric diets where carbohydrates substituted for EtOH calories. RESULTS: EtOH administration significantly increased hepatic oxidative stress, evidenced as decreased liver total glutathione and reduced glutathione/glutathione disulfide ratio. These effects were inhibited by co-administration of EtOH and NAC. Chronic EtOH increased the expression of mitochondrial biogenesis genes including peroxisome proliferator-activated receptor gamma-coactivator-1 alpha and mitochondrial transcription factor A, and mitochondrial DNA; co-administration of EtOH and NAC prevented these effects. Chronic EtOH administration was associated with decreased mitochondrial mass, inactivation and depletion of mitochondrial complex I and complex IV, and increased hepatic mitochondrial oxidative damage, effects that were not prevented by NAC. CONCLUSIONS: These results suggest that oxidative stress caused by chronic EtOH triggered the up-regulation of mitochondrial biogenesis genes in rat liver, because an antioxidant such as NAC prevented both effects. Because NAC did not prevent liver mitochondrial oxidative damage, extra-mitochondrial effects of reactive oxygen species may regulate mitochondrial biogenesis. In spite of the induction of hepatic mitochondrial biogenesis genes by chronic EtOH, mitochondrial mass and function decreased probably in association with mitochondrial oxidative damage. These results also predict that the effectiveness of NAC as an antioxidant therapy for chronic alcoholism will be limited by its limited antioxidant effects in mitochondria, and its inhibitory effect on mitochondrial biogenesis.


Assuntos
Acetilcisteína/administração & dosagem , Etanol/administração & dosagem , Fígado/metabolismo , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Regulação para Cima/fisiologia , Animais , Fígado/efeitos dos fármacos , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos
17.
Analyst ; 139(5): 1155-61, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24427772

RESUMO

Targeted cancer therapies block cancer growth and spread using small molecules. Many molecular targets for an epidermal growth factor receptor (EGFR) selectively compete with the adenosine triphosphate-binding site of its tyrosine kinase domain. Detection of molecular targeted agents and their metabolites in cells/tissues by label-free imaging is attractive because dyes or fluorescent labels may be toxic or invasive. Here, label-free Raman microscopy is applied to show the spatial distribution of the molecular targeted drug erlotinib within the cell. The Raman images show that the drug is clustered at the EGFR protein at the membrane and induces receptor internalization. The changes within the Raman spectrum of erlotinib measured in cells as compared to the free-erlotinib spectrum indicate that erlotinib is metabolized within cells to its demethylated derivative. This study provides detailed insights into the drug targeting mechanism at the atomic level in cells. It demonstrates that Raman microscopy will open avenues as a non-invasive and label-free technique to investigate pharmacokinetics at the highest possible resolution in living cells.


Assuntos
Neoplasias do Colo/metabolismo , Quinazolinas/metabolismo , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Cloridrato de Erlotinib , Humanos , Microscopia Confocal/métodos , Quinazolinas/uso terapêutico
18.
J Lipid Res ; 54(5): 1335-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23359610

RESUMO

Chronic ethanol consumption is a prominent cause of liver disease worldwide. Dysregulation of an important lipid uptake and trafficking gene, liver-fatty acid binding protein (L-FABP), may contribute to alterations in lipid homeostasis during early-stage alcoholic liver. We have reported the detrimental effects of ethanol on the expression of L-FABP and hypothesize this may deleteriously impact metabolic networks regulating fatty acids. Male wild-type (WT) and L-FABP(-/-) mice were fed a modified Lieber-DeCarli liquid diet for six weeks. To assess the response to chronic ethanol ingestion, standard biochemical indicators for alcoholic liver disease (ALD) and oxidative stress were measured. Ethanol ingestion resulted in attenuation of hepatic triglyceride accumulation and elevation of cholesterol in L-FABP(-/-) mice. Lipidomics analysis validated multiple alterations in hepatic lipids resulting from ethanol treatment. Increased immunohistochemical staining for the reactive aldehydes 4-hydroxynonenal and malondialdehyde were observed in WT mice ingesting ethanol; however, L-FABP(-/-) mice displayed prominent protein adducts in liver sections evaluated from pair-fed and ethanol-fed mice. Likewise, alterations in glutathione, thiobarbituric acid reactive substances (TBARS), 8-isoprostanes, and protein carbonyl content all indicated L-FABP(-/-) mice exhibit high sustained oxidative stress in the liver. These data establish that L-FABP is an indirect antioxidant protein essential for sequestering FFA and that its impairment could contribute to in the pathogenesis of ALD.


Assuntos
Etanol/toxicidade , Proteínas de Ligação a Ácido Graxo/metabolismo , Hepatopatias Alcoólicas/genética , Estresse Oxidativo/efeitos dos fármacos , Animais , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos/metabolismo , Predisposição Genética para Doença , Humanos , Lipídeos/análise , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/genética
19.
Hum Genomics ; 6: 6, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23245351

RESUMO

Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs). These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX). As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR). Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.


Assuntos
Família Multigênica , Isomerases de Dissulfetos de Proteínas/genética , Resposta a Proteínas não Dobradas , Algoritmos , Bases de Dados Genéticas , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Evolução Molecular , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Alinhamento de Sequência , Tiorredoxinas/química
20.
Neurochem Res ; 38(9): 1838-49, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23743623

RESUMO

The antioxidant glutathione (GSH) plays a critical role in maintaining intracellular redox homeostasis but in tumors the GSH biosynthetic pathway is often dysregulated, contributing to tumor resistance to radiation and chemotherapy. Glutamate-cysteine ligase (GCL) catalyzes the first and rate-limiting reaction in GSH synthesis, and enzyme function is controlled by GSH feedback inhibition or by transcriptional upregulation of the catalytic (GCLC) and modifier (GCLM) subunits. However, it has recently been reported that the activity of GCLC and the formation of GCL can be modified by reactive aldehyde products derived from lipid peroxidation. Due to the susceptibility of GCLC to posttranslational modifications by reactive aldehydes, we examined the potential for 2-deoxy-D-ribose (2dDR) to glycate GCLC and regulate enzyme activity and GCL formation. 2dDR was found to directly modify both GCLC and GCLM in vitro, resulting in a significant inhibition of GCLC and GCL enzyme activity without altering substrate affinity or feedback inhibition. 2dDR-mediated glycation also inhibited GCL subunit heterodimerization and formation of the GCL holoenzyme complex while not causing dissociation of pre-formed holoenzyme. This PTM could be of particular importance in glioblastoma (GBM) where intratumoral necrosis provides an abundance of thymidine, which can be metabolized by thymidine phosphorylase (TP) to form 2dDR. TP is expressed at high levels in human GBM tumors and shRNA knockdown of TP in U87 GBM cells results in a significant increase in cellular GCL enzymatic activity.


Assuntos
Neoplasias Encefálicas/metabolismo , Desoxirribose/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Glucose/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Catálise , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Cinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA