Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 303(1): 130-138, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904876

RESUMO

Background The first clinical CT system to use photon-counting detector (PCD) technology has become available for patient care. Purpose To assess the technical performance of the PCD CT system with use of phantoms and representative participant examinations. Materials and Methods Institutional review board approval and written informed consent from four participants were obtained. Technical performance of a dual-source PCD CT system was measured for standard and high-spatial-resolution (HR) collimations. Noise power spectrum, modulation transfer function, section sensitivity profile, iodine CT number accuracy in virtual monoenergetic images (VMIs), and iodine concentration accuracy were measured. Four participants were enrolled (between May 2021 and August 2021) in this prospective study and scanned using similar or lower radiation doses as their respective clinical examinations performed on the same day using energy-integrating detector (EID) CT. Image quality and findings from the participants' PCD CT and EID CT examinations were compared. Results All standard technical performance measures met accreditation and regulatory requirements. Relative to filtered back-projection reconstructions, images from iterative reconstruction had lower noise magnitude but preserved noise power spectrum shape and peak frequency. Maximum in-plane spatial resolutions of 125 and 208 µm were measured for HR and standard PCD CT scans, respectively. Minimum values for section sensitivity profile full width at half maximum measurements were 0.34 mm (0.2-mm nominal section thickness) and 0.64 mm (0.4-mm nominal section thickness) for HR and standard PCD CT scans, respectively. In a 120-kV standard PCD CT scan of a 40-cm phantom, VMI iodine CT numbers had a mean percentage error of 5.7%, and iodine concentration had root mean squared error of 0.5 mg/cm3, similar to previously reported values for EID CT. VMIs, iodine maps, and virtual noncontrast images were created for a coronary CT angiogram acquired with 66-msec temporal resolution. Participant PCD CT images showed up to 47% lower noise and/or improved spatial resolution compared with EID CT. Conclusion Technical performance of clinical photon-counting detector (PCD) CT is improved relative to that of a current state-of-the-art CT system. The dual-source PCD geometry facilitated 66-msec temporal resolution multienergy cardiac imaging. Study participant images illustrated the effect of the improved technical performance. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Willemink and Grist in this issue.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Fótons , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos
2.
Invest Radiol ; 57(12): 780-788, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35640019

RESUMO

OBJECTIVES: The aim of this study was to evaluate the feasibility and quality of ultra-high-resolution coronary computed tomography angiography (CCTA) with dual-source photon-counting detector CT (PCD-CT) in patients with a high coronary calcium load, including an analysis of the optimal reconstruction kernel and matrix size. MATERIALS AND METHODS: In this institutional review board-approved study, 20 patients (6 women; mean age, 79 ± 10 years; mean body mass index, 25.6 ± 4.3 kg/m 2 ) undergoing PCD-CCTA in the ultra-high-resolution mode were included. Ultra-high-resolution CCTA was acquired in an electrocardiography-gated dual-source spiral mode at a tube voltage of 120 kV and collimation of 120 × 0.2 mm. The field of view (FOV) and matrix sizes were adjusted to the resolution properties of the individual reconstruction kernels using a FOV of 200 × 200 mm 2 or 150 × 150 mm 2 and a matrix size of 512 × 512 pixels or 1024 × 1024 pixels, respectively. Images were reconstructed using vascular kernels of 8 sharpness levels (Bv40, Bv44, Bv56, Bv60, Bv64, Bv72, Bv80, and Bv89), using quantum iterative reconstruction (QIR) at a strength level of 4, and a slice thickness of 0.2 mm. Images with the Bv40 kernel, QIR at a strength level of 4, and a slice thickness of 0.6 mm served as the reference. Image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, and blooming artifacts were quantified. For subjective image quality, 2 blinded readers evaluated image noise and delineation of coronary artery plaques and the adjacent vessel lumen using a 5-point discrete visual scale. A phantom scan served to characterize image noise texture by calculating the noise power spectrum for every reconstruction kernel. RESULTS: Maximum spatial frequency (f peak ) gradually shifted to higher values for reconstructions with the Bv40 to Bv64 kernel (0.15 to 0.56 mm -1 ), but not for reconstructions with the Bv72 to Bv89 kernel. Ultra-high-resolution CCTA was feasible in all patients (median calcium score, 479). In patients, reconstructions with the Bv40 kernel and a slice thickness of 0.6 mm showed largest blooming artifacts (55.2% ± 9.8%) and lowest vessel sharpness (477.1 ± 73.6 ΔHU/mm) while achieving highest SNR (27.4 ± 5.6) and CNR (32.9 ± 6.6) and lowest noise (17.1 ± 2.2 HU). Considering reconstructions with a slice thickness of 0.2 mm, image noise, SNR, CNR, vessel sharpness, and blooming artifacts significantly differed across kernels (all P 's < 0.001). With higher kernel sharpness, SNR and CNR continuously decreased, whereas image noise and vessel sharpness increased, with highest sharpness for the Bv89 kernel (2383.4 ± 787.1 ΔHU/mm). Blooming artifacts continuously decreased for reconstructions with the Bv40 (slice thickness, 0.2 mm; 52.8% ± 9.2%) to the Bv72 kernel (39.7% ± 9.1%). Subjective noise was perceived by both readers in agreement with the objective measurements. Considering delineation of coronary artery plaques and the adjacent vessel lumen, reconstructions with the Bv64 and Bv72 kernel (for both, median score of 5) were favored by the readers providing an excellent anatomic delineation of plaque characteristics and vessel lumen. CONCLUSIONS: Ultra-high-resolution CCTA with PCD-CT is feasible and enables the visualization of calcified coronaries with an excellent image quality, high sharpness, and reduced blooming. Coronary plaque characterization and delineation of the adjacent vessel lumen are possible with an optimal quality using Bv64 kernel, a FOV of 200 × 200 mm 2 , and a matrix size of 512 × 512 pixels.


Assuntos
Cálcio , Angiografia por Tomografia Computadorizada , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Angiografia Coronária/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
3.
Med Phys ; 48(9): 4824-4842, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34309837

RESUMO

PURPOSE: Dual-source computed tomography (DSCT) uses two source-detector pairs offset by about 90°. In addition to the well-known forward scatter, a special issue in DSCT is cross-scattered radiation from X-ray tube A detected in the detector of system B and vice versa. This effect can lead to artifacts and reduction of the contrast-to-noise ratio of the images. The purpose of this work is to present and evaluate different deep learning-based methods for scatter correction in DSCT. METHODS: We present different neural network-based methods for forward and cross-scatter correction in DSCT. These deep scatter estimation (DSE) methods mainly differ in the input and output information that is provided for training and inference and in whether they operate on two-dimensional (2D) or on three-dimensional (3D) data. The networks are trained and validated with scatter distributions obtained by our in-house Monte Carlo simulation. The simulated geometry is adapted to a realistic clinical setup. RESULTS: All DSE approaches reduce scatter-induced artifacts and lead to superior results than the measurement-based scatter correction. Forward scatter, under the presence of cross-scatter, is best estimated either by our network that uses the current projection and a couple of neighboring views (fDSE 2D few views) or by our 3D network that processes all projections simultaneously (fDSE 3D). Cross-scatter, under the presence of forward scatter, is best estimated using xSSE XDSE 2D, with xSSE referring to a quick single scatter estimate of cross scatter, or by xDSE 3D that uses all projections simultaneously. By using our proposed networks, the total scatter error in dual could be reduced from about 18 HU to approximately 3 HU. CONCLUSIONS: Deep learning-based scatter correction can reduce scatter artifacts in DSCT. To achieve more accurate cross-scatter estimations, the use of a cross-scatter approximation improves the results. Also, the ability to leverage across different projection angles improves the precision of the algorithm.


Assuntos
Aprendizado Profundo , Algoritmos , Artefatos , Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Espalhamento de Radiação , Tomografia Computadorizada por Raios X
4.
Phys Med Biol ; 66(20)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34271558

RESUMO

We report a comprehensive evaluation of a full field-of-view (FOV) photon-counting detector (PCD) computed tomography (CT) system using phantoms, and qualitatively assess image quality in patient examples. A whole-body PCD-CT system with 50 cm FOV, 5.76 cm z-detector coverage and two acquisition modes (standard: 144 × 0.4 mm collimation and ultra-high resolution (UHR): 120 × 0.2 mm collimation) was used in this study. Phantoms were scanned to assess image uniformity, CT number accuracy, noise power spectrum, spatial resolution, material decomposition and virtual monoenergetic imaging (VMI) performance. Four patients were scanned on the PCD-CT system with matched or lower radiation dose than their prior clinical CT scans performed using energy-integrating detector (EID) CT, and the potential clinical impact of PCD-CT was qualitatively evaluated. Phantom results showed water CT numbers within ±5 HU, and image uniformity measured between peripheral and central regions-of-interests to be within ±5 HU. For the UHR mode using a dedicated sharp kernel, the cut-off spatial frequency was 40 line-pairs cm-1, which corresponds to a 125µm limiting in-plane spatial resolution. The full-width-at-half-maximum for the section sensitivity profile was 0.33 mm for the smallest slice thickness (0.2 mm) using the UHR mode. Material decomposition in a multi-energy CT phantom showed accurate material classification, with a root-mean-squared-error of 0.3 mg cc-1for iodine concentrations (2-15 mg cc-1) and 14.2 mg cc-1for hydroxyapatite concentrations (200 and 400 mg cc-1). The average percent error for CT numbers corresponding to the iodine concentrations in VMI (40-70 keV) was 2.75%. Patient PCD-CT images demonstrated better delineation of anatomy for chest and temporal bone exams performed with the UHR mode, which allowed the use of very sharp kernels not possible with EID-CT. VMI and virtual non-contrast images generated from a patient head CT angiography exam using the standard acquisition mode demonstrated the multi-energy capability of the PCD-CT system.


Assuntos
Iodo , Fótons , Humanos , Avaliação de Resultados da Assistência ao Paciente , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-35400786

RESUMO

Computed tomography (CT) using photon-counting detectors (PCD) offers dose-efficient ultra-high-resolution imaging, high iodine contrast-to-noise ratio, multi-energy and material decomposition capabilities. We have previously demonstrated the potential benefits of PCD-CT using phantoms, cadavers, and human studies on a prototype PCD-CT system. This system, however, had several limitations in terms of scan field-of-view (FOV) and longitudinal coverage. Recently, a full FOV (50 cm) PCD-CT system with wider longitudinal coverage and higher spatial resolution (0.15 mm detector pixels) has been installed in our lab capable of human scanning at clinical dose and dose rate. In this work, we share our initial experience of the new PCD-CT system and compare its performance with a state-of-the-art 3rd generation dual-source CT scanner. Basic image quality was assessed using an ACR CT accreditation phantom, high-resolution performance using an anthropomorphic head phantom, and multi-energy and material decomposition performance using a multi-energy CT phantom containing various concentrations of iodine and hydroxyapatite. Finally, we demonstrate the feasibility of high-resolution, full FOV PCD-CT imaging for improved delineation of anatomical and pathological features in a patient with pulmonary nodules.

6.
Invest Radiol ; 56(10): 653-660, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33867450

RESUMO

OBJECTIVES: The aim of this study was to assess in-stent lumen visibility and quantitative image characteristics of different coronary stents using a novel photon-counting detector (PCD) computed tomography (CT) system in comparison to a state-of-the-art energy-integrating detector (EID) CT scanner. MATERIALS AND METHODS: In this in vitro phantom study, 28 different coronary stents ranging from 2.25 to 4.5 mm lumen diameter were expanded into plastic tubes filled with contrast agent. Stent-containing plastic tubes were positioned in a custom-made emulsion-filled phantom, which was inserted into an anthropomorphic phantom simulating a medium-sized patient. Computed tomography scans were acquired parallel to the scanners' z axis using a novel cadmium telluride-based PCD CT system (SOMATOM CountPlus; Siemens Healthcare GmbH, Forchheim Germany), operating in 2 different modes (standard-resolution mode [SR] and ultra-high-resolution [UHR] mode), and a latest generation dual-source EID CT system (SOMATOM Force; Siemens Healthcare GmbH, Forchheim). CTDIvol-matched images were reconstructed with comparable convolution kernels and using the same reconstruction parameters. In-stent lumen visibility (in %), increase in in-stent attenuation (expressed as Δ in-stent CT attenuation), and image noise (in Hounsfield unit) were manually measured. Parts of the image analysis (in-stent lumen visibility) were additionally performed in an automated way. Differences were tested using Wilcoxon signed rank test. RESULTS: The best in-stent lumen visibility was achieved with the PCD-UHR mode and the lowest noise levels with the PCD-SR mode. The median in-stent lumen visibility was significantly higher (P < 0.001) with PCD (SR, 66.7%; interquartile range [IQR], 63.3-72.3; UHR, 68.9%; IQR, 64.4-74.4) compared with EID (65.4%; IQR, 62.2-70.4). The Δ in-stent CT attenuation was significantly lower for PCD in both SR (78 HU; IQR, 46-108; P = 0.024) and UHR (85 HU; IQR, 59-113; P = 0.006) compared with EID (108 HU; IQR, 85-126). Image noise was significantly lower (P < 0.001) for PCD-SR (21 HU; IQR, 21-21) compared with EID images (25 HU; IQR, 24-25.0). CONCLUSIONS: The PCD provides superior in-stent lumen visibility and quantitative image characteristics when compared with conventional EID.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Angiografia Coronária , Humanos , Imagens de Fantasmas , Stents , Tomógrafos Computadorizados
7.
Invest Radiol ; 56(12): 785-790, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882030

RESUMO

OBJECTIVES: Detailed visualization of bone microarchitecture is essential for assessment of wrist fractures in computed tomography (CT). This study aims to evaluate the imaging performance of a CT system with clinical cadmium telluride-based photon-counting detector (PCD-CT) compared with a third-generation dual-source CT scanner with energy-integrating detector technology (EID-CT). MATERIALS AND METHODS: Both CT systems were used for the examination of 8 cadaveric wrists with radiation dose equivalent scan protocols (low-/standard-/full-dose imaging: CTDIvol = 1.50/5.80/8.67 mGy). All wrists were scanned with 2 different operating modes of the photon-counting CT (standard-resolution and ultra-high-resolution). After reformatting with comparable reconstruction parameters and convolution kernels, subjective evaluation of image quality was performed by 3 radiologists on a 7-point scale. For estimation of interrater reliability, we report the intraclass correlation coefficient (absolute agreement, 2-way random-effects model). Signal-to-noise and contrast-to-noise ratios were calculated to provide semiquantitative assessment of image quality. RESULTS: Subjective image quality of standard-dose PCD-CT examinations in ultra-high-resolution mode was superior compared with full-dose PCD-CT in standard-resolution mode (P = 0.016) and full-dose EID-CT (P = 0.040). No difference was ascertained between low-dose PCD-CT in ultra-high-resolution mode and standard-dose scans with either PCD-CT in standard-resolution mode (P = 0.108) or EID-CT (P = 0.470). Observer evaluation of standard-resolution PCD-CT and EID-CT delivered similar results in full- and standard-dose scans (P = 0.248/0.509). Intraclass correlation coefficient was 0.876 (95% confidence interval, 0.744-0.925; P < 0.001), indicating good reliability. Between dose equivalent studies, signal-to-noise and contrast-to-noise ratios were substantially higher in photon-counting CT examinations (all P's < 0.001). CONCLUSIONS: Superior visualization of fine anatomy is feasible with the clinical photon-counting CT system in cadaveric wrist scans. The ultra-high-resolution scan mode suggests potential for considerable dose reduction over energy-integrating dual-source CT.


Assuntos
Tomografia Computadorizada por Raios X , Punho , Cadáver , Compostos de Cádmio , Humanos , Imagens de Fantasmas , Fótons , Reprodutibilidade dos Testes , Telúrio , Tomografia Computadorizada por Raios X/métodos
8.
Phys Med ; 79: 126-136, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33249223

RESUMO

Photon-counting detectors are a promising new technology for computed tomography (CT) systems. They provide energy-resolved CT data at very high spatial resolution without electronic noise and with improved tissue contrasts. This review article gives an overview of the principles of photon-counting detector CT, of potential clinical benefits and limitations, and of the experience gained so far in pre-clinical installations.


Assuntos
Fótons , Tomografia Computadorizada por Raios X
9.
Med Phys ; 36(12): 5641-53, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095277

RESUMO

PURPOSE: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. METHODS: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. RESULTS: No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom acquired with the ECG-triggered high-pitch scan mode were visually free from motion artifacts at heart rates of 60 and 70 bpm. However, image quality started to deteriorate for higher heart rates. At equivalent image quality, the ECG-triggered high-pitch scan mode demonstrated lower radiation dose than other cardiac scan techniques on the same DSCT equipment (25% and 60% dose reduction compared to ECG-triggered sequential step-and-shoot and ECG-gated spiral with x-ray pulsing). CONCLUSIONS: A high-pitch (up to pitch = 3.2), high-temporal-resolution (up to 75 ms) dual-source CT scan mode produced equivalent image quality relative to single-source scans using a more typical pitch value (pitch = 1.0). The resultant reduction in the overall acquisition time may offer clinical advantage for cardiovascular, trauma, and pediatric CT applications. In addition, ECG-triggered high-pitch scanning may be useful as an alternative to ECG-triggered sequential scanning for patients with low to moderate heart rates up to 70 bpm, with the potential to scan the heart within one heart beat at reduced radiation dose.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada Espiral/métodos , Artefatos , Modelos Lineares , Imagens de Fantasmas , Doses de Radiação , Fatores de Tempo
10.
J Cardiovasc Comput Tomogr ; 3(2): 117-21, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19332343

RESUMO

Coronary CT angiography allows high-quality imaging of the coronary arteries when state-of-the-art CT systems are used. However, radiation exposure has been a concern. We describe a new scan mode that uses a very high-pitch spiral acquisition, "Flash Spiral," which has been developed specifically for low-dose imaging with dual-source CT. The scan mode uses a pitch of 3.2 to acquire a spiral CT data set, while covering the entire volume of the heart in one cardiac cycle. Data acquisition is prospectively triggered by the electrocardiogram and starts in late systole to be completed within one cardiac cycle. Images are reconstructed with a temporal resolution that corresponds to one-quarter of the gantry rotation time. Throughout the data set, subsequent images are reconstructed at later time instants in the cardiac cycle. In a patient with a heart rate of 49 beats/min, the Flash Spiral scan mode was used with a first-generation dual-source CT system and allowed artifact-free visualization of the coronary arteries with a radiation exposure of 1.7 mSv for a 12-cm scan range at 120 kVp tube voltage.


Assuntos
Angiografia Coronária/métodos , Estenose Coronária/diagnóstico por imagem , Tomografia Computadorizada Espiral , Angiografia Coronária/efeitos adversos , Eletrocardiografia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Doses de Radiação , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Interpretação de Imagem Radiográfica Assistida por Computador
11.
Eur J Radiol ; 68(3): 362-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18842371

RESUMO

During the past years, multi-detector row CT (MDCT) has evolved into clinical practice with a rapid increase of the number of detector slices. Today's 64 slice CT systems allow whole-body examinations with sub-millimeter resolution in short scan times. As an alternative to adding even more detector slices, we describe the system concept and design of a CT scanner with two X-ray tubes and two detectors (mounted on a CT gantry with a mechanical offset of 90 degrees) that has the potential to overcome limitations of conventional MDCT systems, such as temporal resolution for cardiac imaging. A dual source CT (DSCT) scanner provides temporal resolution equivalent to a quarter of the gantry rotation time, independent of the patient's heart rate (83 ms at 0.33 s rotation time). In addition to the benefits for cardiac scanning, it allows to go beyond conventional CT imaging by obtaining dual energy information if the two tubes are operated at different voltages. Furthermore, we discuss how both acquisition systems can be used to add the power reserve of two X-ray tubes for long scan ranges and obese patients. Finally, future advances of DSCT are highlighted.


Assuntos
Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Avaliação da Tecnologia Biomédica , Tomografia Computadorizada por Raios X/tendências
12.
Eur Radiol ; 16(2): 256-68, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16341833

RESUMO

We present a performance evaluation of a recently introduced dual-source computed tomography (DSCT) system equipped with two X-ray tubes and two corresponding detectors, mounted onto the rotating gantry with an angular offset of 90 degrees . We introduce the system concept and derive its consequences and potential benefits for electrocardiograph [corrected] (ECG)-controlled cardiac CT and for general radiology applications. We evaluate both temporal and spatial resolution by means of phantom scans. We present first patient scans to illustrate the performance of DSCT for ECG-gated cardiac imaging, and we demonstrate first results using a dual-energy acquisition mode. Using ECG-gated single-segment reconstruction, the DSCT system provides 83 ms temporal resolution independent of the patient's heart rate for coronary CT angiography (CTA) and evaluation of basic functional parameters. With dual-segment reconstruction, the mean temporal resolution is 60 ms (minimum temporal resolution 42 ms) for advanced functional evaluation. The z-flying focal spot technique implemented in the evaluated DSCT system allows 0.4 mm cylinders to be resolved at all heart rates. First clinical experience shows a considerably increased robustness for the imaging of patients with high heart rates. As a potential application of the dual-energy acquisition mode, the automatic separation of bones and iodine-filled vessels is demonstrated.


Assuntos
Angiografia Coronária/instrumentação , Estenose Coronária/diagnóstico , Ecocardiografia Quadridimensional/instrumentação , Eletrocardiografia/instrumentação , Aumento da Imagem/instrumentação , Processamento de Imagem Assistida por Computador/instrumentação , Avaliação da Tecnologia Biomédica , Tomografia Computadorizada Espiral/instrumentação , Diástole/fisiologia , Desenho de Equipamento , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Sensibilidade e Especificidade , Sístole/fisiologia
13.
Int J Cardiovasc Imaging ; 19(1): 73-83, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12602485

RESUMO

PURPOSE: Multi-slice computed tomography (MSCT) is an emerging technique for the angiographic assessment of coronary artery disease (CAD). The purpose of this work was to determine if multiphasic reconstructions of the same data used for the assessment of CAD could also be used for global functional evaluation of the left ventricle (LV). MATERIALS AND METHODS: Fifteen patients with chronic ischemic heart disease (CIHD) were imaged for CAD using a contrast-enhanced retrospective electrocardiographic-gated spiral technique on a MSCT scanner. The same data were reconstructed at both end-diastole and end-systole in order to measure left ventricular end-diastolic volume (LVEDV), end-systolic volume (LVESV), and ejection fraction (LVEF). The results were compared to values obtained using a cine true-fast imaging with steady-state precession technique on a magnetic resonance imaging (MRI) scanner. Interobserver variability in the measurement from MSCT images was also evaluated. RESULTS: For LVEF, there was substantial agreement between MSCT and MRI (intraclass correlation coefficient of 0.825); the intermodality reproducibility for LVEF (5%) was within an acceptable clinical range. However, mean values of LVEDV and LVESV with MSCT compared to cine MRI (LVEDV: 262.0 +/- 85.6 ml and 297.2 +/- 98.8 ml, LVESV: 196.2 +/- 75.6 ml and 218.6 +/- 90.99 ml, respectively) were significantly less for both volumes (p < 0.015). Intermodality variabilities for these measurements were high (15 and 13% for LVEDV and LVESV, respectively). Readers' mean measurements of LVESV from MSCT images were significantly different (p = 0.003) resulting in differences in calculation of LVEF (p < 0.024). Still, interobserver variabilities for all values were acceptable (6, 8, and 5% for LVEDV, LVESV, and LVEF, respectively). CONCLUSION: Although values for LVEDV and LVESV were less with MSCT than with MRI, LVEF values were in agreement. This suggests that combined imaging of CAD and the evaluation of global LV dysfunction due to CIHD is feasible with the same MSCT acquisition.


Assuntos
Processamento de Imagem Assistida por Computador , Isquemia Miocárdica/diagnóstico , Tomografia Computadorizada Espiral/métodos , Disfunção Ventricular Esquerda/diagnóstico , Adulto , Idoso , Meios de Contraste , Doença das Coronárias/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/complicações , Variações Dependentes do Observador , Disfunção Ventricular Esquerda/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA