Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Am Chem Soc ; 145(39): 21213-21221, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37750755

RESUMO

In nature, aquaporins (AQPs) are proteins known for fast water transport through the membrane of living cells. Artificial water channels (AWCs) synthetic counterparts with intrinsic water permeability have been developed with the hope of mimicking the performances and the natural functions of AQPs. Highly selective AWCs are needed, and the design of selectivity filters for water is of tremendous importance. Herein, we report the use of self-assembled trianglamine macrocycles acting as AWCs in lipid bilayer membranes that are able to transport water with steric restriction along biomimetic H-bonding-decorated pores conferring selective binding filters for water. Trianglamine [(±)Δ, (mixture of diastereoisomers) and (R,R)3Δ and (S,S)3Δ], trianglamine hydrochloride (Δ.HCl), and alkyl-ureido trianglamines (n = 4, 6, 8, and 12) [(±)ΔC4, (±)ΔC8, (±)ΔC6, and (±)ΔC12] were synthesized for the studies presented here. The single-crystal X-ray structures confirmed that trianglamines form a tubular superstructure in the solid state. The water translocation is controlled via successive selective H-bonding pores (a diameter of 3 Å) and highly permeable hydrophobic vestibules (a diameter of 5 Å). The self-assembled alkyl-ureido-trianglamines achieve a single-channel permeability of 108 water molecules/second/channel, which is within 1 order of magnitude lower than AQPs with good ability to sterically reject ions and preventing the proton transport. Trianglamines present potential for engineering membranes for water purification and separation technologies.

2.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771135

RESUMO

Cyclopropylamine borane C3H5NH2BH3 (C3AB), 2-ethyl-1-hexylamine borane CH3(CH2)3CH(C2H5)CH2NH2BH3 (C2C6AB) and didodecylamine borane (C12H25)2NHBH3 ((C12)2AB) are three new amine borane adducts (ABAs). They are synthesized by reaction of the corresponding amines with a borane complex, the reaction being exothermic as shown by Calvet calorimetry. The successful synthesis of each has been demonstrated by FTIR, Raman and NMR. For instance, the 11B NMR spectra show the presence of signals typical of the NBH3 environment, thereby implying the formation of B-N bonds. The occurrence of dihydrogen bonds (DHBs) for each of the ABAs has been highlighted by DSC and FTIR, and supported by DFT calculations (via the Mulliken charges for example). When heated, the three ABAs behave differently: C3AB and C2C6AB decompose from 68 to 100 °C whereas (C12)2AB is relatively stable up to 173 °C. That means that these ABAs are not appropriate as hydrogen carriers, but the 'most' stable (C12)2AB could open perspectives for the synthesis of advanced materials.

3.
Langmuir ; 38(46): 14140-14152, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36350015

RESUMO

The design of hydrophobic surfaces requires a material which has a low solid surface tension and a simple fabrication process for anchoring and controlling the surface morphology. A generic method for the spontaneous formation of robust instability patterns is proposed through the hydrosilylation of a fluoroalkene bearing dangling chains, Rf = C6F13(CH2)3-, with a soft polymethylhydrosiloxane (PMHS) spin-coated gel polymer (0.8 µm thick) using Karstedt catalyst. These patterns were easily formed by an irreversible swelling reaction due to the attachment of a layer to various substrates. The buckling instability was created by two different approaches for a gel layer bound to a rigid silicon wafer substrate (A) and to a soft nonswelling silicone elastomer foundation (B). The observations of grafted Rf-PMHS films in the swollen state by microscopy revealed two distinct permanent patterns on various substrates: dotlike of wavelength λ = 0.4-0.7 µm (A) or wrinkle of wavelength λ = 4-7 µm (B). The elastic moduli ratios of film/substrate were determined using PeakForce quantitative nanomechanical mapping. The characteristic wavelengths (λ) of the patterns for systems A and B were quantitatively estimated in relation to the thickness of the top layer. A diversity of wrinkle morphologies can be achieved by grafting different side chains on pristine PMHS films. The water contact angle (WCA) hysteresis of fluorinated chain (Rf) was enhanced upon roughening the surfaces, giving highly hydrophobic surface properties for water with static/hysteresis WCAs of 136°/74° in the resulting wrinkle (B) and 119°/41° in the dotlike of lower roughness (A). The hydrophobic properties of grafted films on A with various mixtures of hexyl/fluoroalkyl chains were characterized by static CA: WCA 104-119°, ethylene glycol CA 80-96°, and n-hexadecane CA 17-61°. A very low surface energy of 15 mN/m for Rf-PMHS was found on the smoother dotlike pattern.

4.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335336

RESUMO

In hydrolysis and electro-oxidation of the borohydride anion BH4-, key reactions in the field of energy, one critical short-living intermediate is BH3OH-. When water was used as both solvent and reactant, only BH3OH- is detected by 11B NMR. By moving away from such conditions and using DMF as solvent and water as reactant in excess, four 11B NMR quartets were observed. These signals were due to BH3-based intermediates as suggested by theoretical calculations; they were DMF·BH3, BH3OH-, and B2H7- (i.e., [H3B-H-BH3]- or [H4B-BH3]-). Our results shed light on the importance of BH3 stemming from BH4- and on its capacity as Lewis acid to interact with Lewis bases such as DMF, OH-, and BH4-. These findings are important for a better understanding at the molecular level of hydrolysis of BH4- and production of impurities in boranes synthesis.


Assuntos
Boranos , Ânions , Boroidretos/química , Hidrólise , Água
5.
Chemistry ; 27(2): 809-814, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33037687

RESUMO

A new sustainable method is reported for the formation of aromatic carbon-heteroatom bonds under solvent-free and mild conditions (no co-oxidant, no strong acid and no toxic reagents) by using a new type of green ionic liquid. The bromination of methoxy arenes was chosen as a model reaction. The reaction methodology is based on only using natural sodium bromine, which is transformed into an electrophilic brominating reagent within an ionic liquid, easily prepared from the melted salt FeCl3 hexahydrate. Bromination reactions with this in-situ-generated reagent gave good yields and excellent regioselectivity under simple and environmentally friendly conditions. To understand the unusual bromine polarity reversal of sodium bromine without any strong oxidant, the molecular structure of the reaction medium was characterised by Raman and direct infusion electrospray ionisation mass spectroscopy (ESI-MS). An extensive computational investigation using density functional theory methods was performed to describe a mechanism that suggests indirect oxidation of Br- through new iron adducts. The versatility of the methodology was successively applied to nitration and thiocyanation of methoxy arenes using KNO3 and KSCN in melted hexahydrated FeCl3 .

6.
Molecules ; 26(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885776

RESUMO

Cyclic oxyterpenes are natural products that are mostly used as fragrances, flavours and drugs by the cosmetic, food and pharmaceutical industries. However, only a few cyclic oxyterpenes are accessible via chemical syntheses, which are far from being ecofriendly. We report here the synthesis of six cyclic oxyterpenes derived from ß-pinene while respecting the principles of green and sustainable chemistry. Only natural or biosourced catalysts were used in mild conditions that were optimised for each synthesis. A new generation of ecocatalysts, derived from Mn-rich water lettuce, was prepared via green processes, characterised by MP-AES, XRPD and TEM analyses, and tested in catalysis. The epoxidation of ß-pinene led to the platform molecule, ß-pinene oxide, with a good yield, illustrating the efficacy of the new generation of ecocatalysts. The opening ß-pinene oxide was investigated in green conditions and led to new and regioselective syntheses of myrtenol, 7-hydroxy-α-terpineol and perillyl alcohol. Successive oxidations of perillyl alcohol could be performed using no hazardous oxidant and were controlled using the new generation of ecocatalysts generating perillaldehyde and cuminaldehyde.


Assuntos
Química Verde , Terpenos/síntese química , Benzaldeídos/síntese química , Benzaldeídos/química , Monoterpenos Bicíclicos/síntese química , Monoterpenos Bicíclicos/química , Catálise , Cimenos/síntese química , Cimenos/química , Elementos Químicos , Monoterpenos/síntese química , Monoterpenos/química , Análise de Componente Principal , Terpenos/química , Difração de Raios X
7.
Nat Mater ; 18(10): 1112-1117, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451779

RESUMO

Nanolaminate membranes made of two-dimensional materials such as graphene oxide are promising candidates for molecular sieving via size-limited diffusion in the two-dimensional capillaries, but high hydrophilicity makes these membranes unstable in water. Here, we report a nanolaminate membrane based on covalently functionalized molybdenum disulfide (MoS2) nanosheets. The functionalized MoS2 membranes demonstrate >90% and ~87% rejection for micropollutants and NaCl, respectively, when operating under reverse osmotic conditions. The sieving performance and water flux of the functionalized MoS2 membranes are attributed both to control of the capillary widths of the nanolaminates and to control of the surface chemistry of the nanosheets. We identify small hydrophobic functional groups, such as the methyl group, as the most promising for water purification. Methyl- functionalized nanosheets show high water permeation rates as confirmed by our molecular dynamic simulations, while maintaining high NaCl rejection. Control of the surface chemistry and the interlayer spacing therefore offers opportunities to tune the selectivity of the membranes while enhancing their stability.

8.
Chemistry ; 23(17): 4037-4041, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28177540

RESUMO

The complete structure of non-crystalline compounds can be determined by confining them in crystalline structures. The reduced motional degrees of freedom of encapsulated guests can be obtained through their anchoring to the host cages, which results in the reduction of a significant amount of disorder. The "pyrene box" cages that easily crystallize from aqueous solutions are recommended to achieve complete structure elucidation of compounds of biological interest. In this study, the "pyrene box" cages have been used for the in situ encapsulation of biogenic amines: histamine, dopamine, and serotonin. NMR spectroscopy illustrates that these systems are stable in aqueous solution. The X-ray single-crystal structure analysis reveals that the pyrene box/biogenic amine systems are stabilized through combined interactions, strongly contributing to in situ fixation and accurate determination of their crystal structures.

9.
Chemistry ; 22(6): 2158-2164, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26743009

RESUMO

The natural KcsA K+ channel, one of the best-characterized biological pore structures, conducts K+ cations at high rates while excluding Na+ cations. The KcsA K+ channel is of primordial inspiration for the design of artificial channels. Important progress in improving conduction activity and K+ /Na+ selectivity has been achieved with artificial ion-channel systems. However, simple artificial systems exhibiting K+ /Na+ selectivity and mimicking the biofunctions of the KcsA K+ channel are unknown. Herein, an artificial ion channel formed by H-bonded stacks of squalyl crown ethers, in which K+ conduction is highly preferred to Na+ conduction, is reported. The K+ -channel behavior is interpreted as arising from discreet stacks of dimers resulting in the formation of oligomeric channels, in which transport of cations occurs through macrocycles mixed with dimeric carriers undergoing dynamic exchange within the bilayer membrane. The present highly K+ -selective macrocyclic channel can be regarded as a biomimetic alternative to the KcsA channel.

10.
Int J Mol Sci ; 17(8)2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27472321

RESUMO

Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al2O3) powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO2 separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX), N2 adsorption measurements, fourier transform infrared spectroscopy (FTIR), and special attention was paid to (31)P and (13)C solid state nuclear magnetic resonance spectroscopy (NMR).


Assuntos
Óxido de Alumínio/química , Imidazolinas/química , Líquidos Iônicos/química , Membranas Artificiais , Organofosfonatos/química , Espectroscopia de Ressonância Magnética , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Inorg Chem ; 54(9): 4574-83, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25897476

RESUMO

Hydrazine bisborane N2H4(BH3)2 (HBB; 16.8 wt %) recently re-emerged as a potential hydrogen storage material. However, such potential is controversial: HBB was seen as a hazardous compound up to 2010, but now it would be suitable for hydrogen storage. In this context, we focused on fundamentals of HBB because they are missing in the literature and should help to shed light on its effective potential while taking into consideration any risk. Experimental/computational methods were used to get a complete characterization data sheet, including, e.g., XRD, NMR, FTIR, Raman, TGA, and DSC. From the reported results and discussion, it is concluded that HBB has potential in the field of chemical hydrogen storage given that both thermolytic and hydrolytic dehydrogenations were analyzed. In solid-state chemical hydrogen storage, it cannot be used in the pristine state (risk of explosion during dehydrogenation) but can be used for the synthesis of derivatives with improved dehydrogenation properties. In liquid-state chemical hydrogen storage, it can be studied for room-temperature dehydrogenation, but this requires the development of an active and selective metal-based catalyst. HBB is a thus a candidate for chemical hydrogen storage.

12.
Angew Chem Int Ed Engl ; 54(48): 14473-7, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26437848

RESUMO

The bacterial KcsA channel conducts K(+) cations at high rates while excluding Na(+) cations. Herein, we report an artificial ion-channel formed by H-bonded stacks of crown-ethers, where K(+) cation conduction is highly preferred to Na(+) cations. The macrocycles aligned along the central pore surround the K(+) cations in a similar manner to the water around the hydrated cation, compensating for the energetic cost of their dehydration. In contrast, the Na(+) cation does not fit the macrocyclic binding sites, so its dehydration is not completely compensated. The present highly K(+)-selective macrocyclic channel may be regarded as a biomimetic of the KcsA channel.


Assuntos
Colesterol/química , Éteres de Coroa/química , Canais de Potássio/química
13.
Front Bioeng Biotechnol ; 12: 1422580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253703

RESUMO

Methane (CH4) hydroxylation into methanol (MeOH) by methanotrophic bacteria is an attractive and sustainable approach to producing MeOH. The model strain Methylosinus trichosporium OB3b has been reported to be an efficient hydroxylating biocatalyst. Previous works have shown that regardless of the bioreactor design or operation mode, MeOH concentration reaches a threshold after a few hours, but there are no investigations into the reasons behind this phenomenon. The present work entails monitoring both MeOH and formate concentrations during CH4 hydroxylation, where neither a gaseous substrate nor nutrient shortage was evidenced. Under the assayed reaction conditions, bacterial stress was shown to occur, but methanol was not responsible for this. Formate addition was necessary to start MeOH production. Nuclear magnetic resonance analyses with 13C-formate proved that the formate was instrumental in regenerating NADH; formate was exhausted during the reaction, but increased quantities of formate were unable to prevent MeOH production stop. The formate mass balance showed that the formate-to-methanol yield was around 50%, suggesting a cell regulation phenomenon. Hence, this study presents the possible physiological causes that need to be investigated further. Finally, to the best of our knowledge, this study shows that the reaction can be achieved in the native bacterial culture (i.e., culture medium containing added methanol dehydrogenase inhibitors) by avoiding the centrifugation steps while limiting the hands-on time and water consumption.

14.
ACS Nano ; 18(27): 17483-17491, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38913669

RESUMO

The development of highly selective and energy efficient technologies for electrochemical CO2 reduction combined with renewable energy sources holds great promise for advancing the field of sustainable chemistry. The engineering of copper-based electrodes facilitates the conversion of CO2 into high-value multicarbon products (C2+). However, the ambiguous determination of the intrinsic CO2 activity and the maximization of the density of exposed active sites have severely limited the use of Cu for the realization of practical electrocatalytic devices. Here, we report a scalable strategy to obtain a high density of undercoordinated sites by maximizing the exposure of grain-boundary active sites using a direct chronoamperometric pulse method. Our numerical investigations predicted that grain boundaries modulate the adsorption behavior of *CO on the Cu surface, which acts as a key intermediate species associated with the production of multicarbon species. We investigated the consequence of grain-boundary density on dendric Cu catalysts (GB-Cu) by combining transmission electron microscopy, in situ Raman spectroscopy, and X-ray photoelectron spectroscopy with electrochemical measurements. A linear relationship between the Faradaic efficiency of the C2+ product and the presence of undercoordinated sites was observed, which allowed to directly quantify the contribution of the grain boundary in Cu-based catalysts on the CO2RR properties and the formation of multicarbon products. Using a membrane electrode assembly electrolyzer, the high grain-boundary density Cu electrodes achieved a maximum Faradaic efficiency of 73.2% for C2+ product formation and a full-cell energy efficiency of 20.2% at a specific current density of 303.6 mA cm-2. The GB-Cu was implemented in a 25 cm2 MEA electrolyzer and demonstrated selectivity of over 62% for 70 h together with current retention of 88.4% at the applied potential of -3.80 V. The catalysts and electrolyzer were further coupled to an InGaP/GaAs/Ge triple-junction solar cell to demonstrate a solar-to-fuel (STF) conversion efficiency of 8.33%. This work designed an undercoordinated Cu-based catalyst for the realization of solar-driven fuel production.

15.
Chemistry ; 19(15): 4946-50, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23504770

RESUMO

Shatruk and Alabugin propose an alternative structural model for the observed electron density that we have attributed to the photochemical formation of 1,3-dimethylcyclobutadiene in a protective solid crystalline matrix. The main criticism from Shatruk and Alabugin concerns the modeling of the disorder in the calixarene cavity and in particular the neglect of a residual electron density close to the O1 atom. We published (Chem. Eur. J. 2011, 17, 10021) our opinion concerning this "ignored peak" in the Supporting Information of the paper. The current response to the Correspondence demonstrates that Shatruk and Alabugin have over-modeled our data by assigning a small electron density peak, which is hardly more than the density corresponding to a hydrogen atom, to an under-occupied oxygen site, using inappropriate refinement contraints.

16.
Chemistry ; 19(15): 4938-41, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23504859

RESUMO

Following earlier reports on the photochemical synthesis of 1,3-dimethylcyclobutadiene in a protective host matrix, theoretical calculations for the formation of that adduct have been recently performed by Rzepa. The author formulated criticisms based mainly on density functional theory calculations of (1)H NMR spectra. According to Rzepa the calculated spectra do not correspond with our measured spectra, which leads him to the conclusion that our interpretation is wrong, and that mainly cyclobutadiene has not been stabilized or even synthesized; we believe, however, that the initial model that Rzepa used for his calculations does not correspond to chemical reality or is at the very least a crude simplification of it, which implies that his calculations cannot match, in every point, our experimental spectra. Rzepa's simplified models might be 'reasonable' from the theoretical point of view; however, in the case of assessment in the solid state, the theoretical setup does not force the system to preserve the confined stabilizing space defined by the crystalline matrix for encapsulated hosts in the solid state. Inversely, in the case of solution modeling, the theoretical setup is too rigid to properly assess the complex equilibria occurring in solution and to accurately determine the NMR spectra of exchanging species in solution. The inconsistency between our experimental results and the results of the theoretical models proposed by Rzepa is such that his conclusions are considered to be too far from experimental reality. Accurate modeling taking in account "reasonable" experimental details would be a worthwhile endeavor.

17.
Chemosphere ; 313: 137307, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427577

RESUMO

Persistent and emerging organic pollutants represent a serious and global threat to human health and ecosystems. We describe here a simple, efficient and affordable technology for removing such organic pollutants from aquatic systems. Biosorption process was chosen, meeting these three criteria, and so that biosorbents should be biomass wastes combining the following characteristics: natural, cheap and abundant. Powdered dead roots from invasive alien species (Eichhornia crassipes, Pistia stratiotes and Fallopia japonica), and wastes rich in tannins such as coffee grounds and green tea grounds were tested as biosorbents for removing extensively used organic pollutants: organic UV-filters, insecticides and herbicides. The elemental composition and morphology of the biosorbents were fully determined. The biosorption kinetics for each pair of biosorbent/pollutant was described by a pseudo-second order model. Excellent biosorption efficiency was obtained for 10 µM solution of oxybenzone (89 ± 1%), octocrylene (90 ± 2%), lindane (88 ± 0%) and diuron (90 ± 1%) in only 2 h. And total removal of 10 µM of chlordecone (100 ± 0%) could be achieved, which could be of high concern for the population living in chlordecone-contaminated areas. As such pollutants can be found in aquatic ecosystems, an interference study with salts showed that biosorption efficiency remained as efficient in reconstituted seawater. A principal component analysis was performed as an attempt to rationalise the biosorption results. The solubility of the organic pollutants in water and the concentration of tanins in the biosorbents were key parameters.


Assuntos
Clordecona , Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Biomassa , Ecossistema , Poluentes Químicos da Água/análise , Poluentes Ambientais/análise , Clordecona/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio
18.
Carbohydr Polym ; 319: 121189, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567721

RESUMO

Cellulose-based materials are a sustainable alternative to polymers derived from petroleum. Cellulose nanocrystal (CNC) is a biopolymer belonging to this family; it is commonly known for its important physical and chemical properties and ability to form a film. Modifying CNC via electrostatic interaction provided by cationic polymers is a facile and promising technique to enlarge the application of CNC. Herein, we report the preparation of films, from blends of negatively charged CNC and positively charged poly (trimethyl aminoethyl methacrylate) (PTMAEMA). The interaction between CNC and PTMAEMA was verified by using a quartz crystal microbalance with dissipation monitoring (QCM-D), as well as by measuring the particle size and ζ-potential of the casting mixture. To favor the application of the nanocomposite film in water treatment, the film was supported on Whatman™ paper, and adsorption tests were conducted using perfluorooctanoic acid (PFOA) as a model compound for the family of persistent fluorinated pollutants known as PFAS (per- and polyfluoroalkyl substances).

19.
Phys Chem Chem Phys ; 14(5): 1768-77, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22166916

RESUMO

Hydrazine borane (N(2)H(4)BH(3)) is the novel boron- and nitrogen-based material appearing to be a promising candidate in chemical hydrogen storage. It stores 15.4 wt% of hydrogen in hydridic and protic forms, and the challenge is to release H(2) with maximum efficiency, if possible all hydrogen stored in the material. An important step to realize this ambitious goal is to synthesize HB with high yields and high purity, and to characterize it fully. In this work, we report a 2-step synthesis (salt metathesis and solvent extraction-drying) through which N(2)H(4)BH(3) is successfully obtained in 3 days, with a yield of about 80% and a purity of 99.6%. N(2)H(4)BH(3) was characterized by NMR, IR, XRD, TGA and DSC, its stability in dioxane and water was determined, and its thermolysis by-products were characterized. We thus present a complete data sheet that should be very useful for future studies. Furthermore, we propose a discussion on the potential of HB (with H(2) released by either thermolysis or hydrolysis) in chemical hydrogen storage.

20.
Dalton Trans ; 51(7): 2674-2695, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35088785

RESUMO

The demand for fresh and clean water sources is increasing globally, and there is a need to develop novel routes to eliminate micropollutants and other harmful species from water. Photocatalysis is a promising alternative green technology that has shown great performance in the degradation of persistent pollutants. Titanium dioxide is the most used catalyst owing to its attractive physico-chemical properties, but this semiconductor presents limitations in the photocatalysis process due to the high band gap and the fast recombination of the photogenerated carriers. Herein, a novel photocatalyst has been developed, based on titanium dioxide nanofibers (TiO2 NFs) synthesized by electrospinning. The TiO2 NFs were coated by atomic layer deposition (ALD) to grow boron nitride (BN) and palladium (Pd) on their surface. The UV-Vis spectroscopy measurements confirmed the increase of the band gap and the extension of the spectral response to the visible range. The obtained TiO2/BN/Pd nanofibers were then tested for photocatalysis, and showed a drastic increase of acetaminophen (ACT) degradation (>90%), compared to only 20% degradation obtained with pure TiO2 after 4 h of visible light irradiation. The high photocatalytic activity was attributed to the good dispersion of Pd NPs on TiO2-BN nanofibers, leading to a higher transfer of photoexcited hole carriers and a decrease of photogenerated electron-charge recombination. To confirm its reusability, recycling tests on the hybrid photocatalyst TiO2/BN/Pd have been performed, showing a good stability over 5 cycles under UV and visible light. In addition, toxicity tests as well as quenching tests were carried out to check the toxicity of the byproducts formed and to determine active species responsible for the degradation. The results presented in this work demonstrate the potential of TiO2/BN/Pd nanomaterials, and open new prospects for the preparation of tunable photocatalysts.


Assuntos
Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA