Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Reproduction ; 160(2): 259-268, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449695

RESUMO

Testicular peritubular cells (TPCs) are smooth muscle-like cells, which form a compartment surrounding the seminiferous tubules. Previous studies employing isolated human testicular peritubular cells (HTPCs) indicated that their roles in the testis go beyond sperm transport and include paracrine and immunological contributions. Peritubular cells from a non-human primate (MKTPCs), the common marmoset monkey, Callithrix jacchus, share a high degree of homology with HTPCs. However, like their human counterparts these cells age in vitro and replicative senescence limits in-depth functional or mechanistic studies. Therefore, a stable cellular model was established. MKTPCs of a young adult animal were immortalized by piggyBac transposition of human telomerase (hTERT), that is, without the expression of viral oncogenes. Immortalized MKTPCs (iMKTPCs) grew without discernable changes for more than 50 passages. An initial characterization revealed typical genes expressed by peritubular cells (androgen receptor (AR), smooth-muscle actin (ACTA2), calponin (CNN1)). A proteome analysis of the primary MKTPCs and the derived immortalized cell line confirmed that the cells almost completely retained their phenotype. To test whether they respond in a similar way as HTPCs, iMKTPCs were challenged with forskolin (FSK) and ATP. As HTPCs, they showed increased expression level of the StAR protein (StAR) after FSK stimulation, indicating steroidogenic capacity. ATP increased the expression of pro-inflammatory factors (e.g. IL1B; CCL7), as it is the case in HTPCs. Finally, we confirmed that iMKTPCs can efficiently be transfected. Therefore, they represent a highly relevant translational model, which allows mechanistic studies for further exploration of the roles of testicular peritubular cells.


Assuntos
Senescência Celular , Modelos Animais , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Túbulos Seminíferos/metabolismo , Testículo/metabolismo , Animais , Callithrix , Masculino , Proteoma/análise , Túbulos Seminíferos/citologia , Testículo/citologia
2.
Xenotransplantation ; 25(4): e12429, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30264886

RESUMO

BACKGROUND: Porcine induced pluripotent stem cells (piPSCs) offer an alternative strategy in xenotransplantation (XTx). As human endogenous retroviruses (HERV), particularly HERV-K, are highly expressed in natural human stem cells, we compared the expression of porcine endogenous retroviruses (PERV) and retrotransposon LINE-1 (L1) open reading frames 1 and 2 (pORF1 and pORF2) in different piPSC-like cell lines with their progenitors (porcine fetal fibroblasts, pFF). METHODS: Cells reprogrammed via Sleeping Beauty-transposed transcription factors were cultured and analyzed on a custom-designed microarray representing the reference pig genome. Data were complemented by qRT-PCR and reverse transcriptase (RT) assay. RESULTS: The expression profiles revealed that 8515 of 26 967 targets were differentially expressed. A total of 4443 targets showed log2 expression ratio >1, and 4072 targets showed log2 expression ratio less than -1 with 0.05 P-value threshold. Approximately ten percent of the targets showed highly significant expression ratios with log2 ≥4 or ≤-4. Besides this general switch in cellular gene expression that was accompanied by an altered morphology, expression of both PERV and L1 pORF1/pORF2 was significantly enhanced. piPSC-like cells revealed a 10-fold to 100-fold higher transcription of the viral PERV-A and PERV-B envelope genes (env), viral protease/polymerase (prt/pol), and L1 elements. No functional retrovirus could be detected under these conditions. CONCLUSION: Epigenetic reprogramming has functional impact on retrotransposons. Thus, the induction of pig-derived pluripotent cells influences their PERV expression profile. Data emphasize the necessity to focus on animals, which show non-functional endogenous viral background to ensure virological safety.


Assuntos
Retrovirus Endógenos , Expressão Gênica/fisiologia , Células-Tronco Pluripotentes Induzidas , Transplante Heterólogo , Animais , Células Cultivadas , Humanos , Suínos
3.
Xenotransplantation ; 25(5): e12387, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29446180

RESUMO

BACKGROUND: The programmed cell death-1 (PD-1, CD279)/PD-Ligand1 (PD-L1, CD274) receptor system is crucial for controlling the balance between immune activation and induction of tolerance via generation of inhibitory signals. Expression of PD-L1 is associated with reduced immunogenicity and renders cells and tissues to an immune-privileged/tolerogenic state. METHODS: To apply this concept for clinical xenotransplantation, we generated human (h)PD-L1 transgenic pigs and characterized expression and biological function of the transgene at the cellular level. RESULTS: The hPD-L1 was detected in kidney, heart, and pancreas. In addition, peripheral blood mononuclear cells (PBMC), cultured fibroblasts, and endothelial cells were hPD-L1 positive (hPD-L1+ ). The hPD-L1 levels were increased by the treatment of transgenic cells with human cytokines (eg, TNF-α), suggesting a regulatable mode of transgene expression. Compared to cells from wild-type pigs, hPD-L1+ PBMC had a significantly reduced capacity to stimulate proliferation of human CD4+ T cells. Moreover, fibroblasts from hPD-L1 transgenic pigs were partially protected from cell-mediated lysis by human cytotoxic effector cells. CONCLUSIONS: These data indicate a low immunogenic, immune-protected status of cells from hPD-L1 transgenic pigs. The integration of the hPD-L1 concept into existing multi-transgenic pigs is promising to achieve long-term survival of porcine xenografts in non-human primate recipients.


Assuntos
Animais Geneticamente Modificados/imunologia , Antígeno B7-H1/metabolismo , Xenoenxertos/imunologia , Leucócitos Mononucleares/imunologia , Linfócitos T/imunologia , Animais , Formação de Anticorpos/imunologia , Proliferação de Células/fisiologia , Citotoxicidade Imunológica/imunologia , Células Endoteliais/imunologia , Humanos , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Suínos , Transplante Heterólogo
4.
Mol Reprod Dev ; 84(3): 229-245, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28044390

RESUMO

Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to shed more light on the underlying biological mechanisms of porcine pluripotency. LIF-derived piPSCs were more successful than their FGF-derived counterparts in the generation of in vitro chimeras and in teratoma formation. When LIF piPSCs chimeras were transferred into surrogate sows and allowed to develop, only their prescence within the embryonic membranes could be detected. Whole-transcriptome analysis of the piPSCs and porcine neonatal fibroblasts showed that they clustered together, but apart from the two pluripotent cell populations of early porcine embryos, indicating incomplete reprogramming. Indeed, bioinformatic analysis of the pluripotency-related gene network of the LIF- versus FGF-derived piPSCs revealed that ZFP42 (REX1) expression was absent in both piPSC-like cells, whereas it was expressed in the porcine inner cell mass at Day 7/8. A second striking difference was the expression of ATOH1 in piPSC-like cells, which was absent in the inner cell mass. Moreover, our gene expression analyses plus correlation analyses of known pluripotency genes identified unique relationships between pluripotency genes in the inner cell mass, which are to some extent, in the piPSC-like cells. This deficiency in downstream gene activation and divergent gene expression may be underlie the inability to derive germ line-transmitting piPSCs, and provides unique insight into which genes are necessary to achieve fully reprogrammed piPSCs. 84: 229-245, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fator Inibidor de Leucemia/farmacologia , Animais , Células-Tronco Pluripotentes Induzidas/citologia , Suínos
5.
Cell Stem Cell ; 30(7): 938-949.e7, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37343565

RESUMO

Differential speeds in biochemical reactions have been proposed to be responsible for the differences in developmental tempo between mice and humans. However, the underlying mechanism controlling the species-specific kinetics remains to be determined. Using in vitro differentiation of pluripotent stem cells, we recapitulated the segmentation clocks of diverse mammalian species varying in body weight and taxa: marmoset, rabbit, cattle, and rhinoceros. Together with mouse and human, the segmentation clock periods of the six species did not scale with the animal body weight, but with the embryogenesis length. The biochemical kinetics of the core clock gene HES7 displayed clear scaling with the species-specific segmentation clock period. However, the cellular metabolic rates did not show an evident correlation. Instead, genes involving biochemical reactions showed an expression pattern that scales with the segmentation clock period. Altogether, our stem cell zoo uncovered general scaling laws governing species-specific developmental tempo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Bovinos , Coelhos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relógios Biológicos , Diferenciação Celular , Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
6.
Methods Mol Biol ; 2454: 717-729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33733393

RESUMO

The generation and culture of transgene-free induced pluripotent stem cells (iPSCs) from the common marmoset (Callithrix jacchus) present unique challenges due to the fact that the protocols developed for culture of human or mouse pluripotent cells are not sufficiently optimized for this particular monkey species. Here, we describe the procedures for the reprogramming of marmoset fetal fibroblasts to pluripotency with self-replicating mRNAs using a two-step approach, where intermediate primary colonies generated in the first reprogramming step are converted in the second step to iPSCs with customized marmoset culture medium. The resulting iPSCs are free of transgenes and can be maintained in long-term culture in feeder-free conditions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Callithrix , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Reprogramação Celular/genética , Fibroblastos , Camundongos , RNA Mensageiro
7.
Sci Rep ; 11(1): 15439, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326359

RESUMO

Non-human primates (NHPs) are, due to their close phylogenetic relationship to humans, excellent animal models to study clinically relevant mutations. However, the toolbox for the genetic modification of NHPs is less developed than those for other species like mice. Therefore, it is necessary to further develop and refine genome editing approaches in NHPs. NHP pluripotent stem cells (PSCs) share key molecular signatures with the early embryo, which is an important target for genomic modification. Therefore, PSCs are a valuable test system for the validation of embryonic genome editing approaches. In the present study, we made use of the versatility of the piggyBac transposon system for different purposes in the context of NHP stem cell technology and genome editing. These include (1) Robust reprogramming of rhesus macaque fibroblasts to induced pluripotent stem cells (iPSCs); (2) Culture of the iPSCs under feeder-free conditions even after removal of the transgene resulting in transgene-free iPSCs; (3) Development of a CRISPR/Cas-based work-flow to edit the genome of rhesus macaque PSCs with high efficiency; (4) Establishment of a novel protocol for the derivation of gene-edited monoclonal NHP-iPSC lines. These findings facilitate efficient testing of genome editing approaches in NHP-PSC before their in vivo application.


Assuntos
Reprogramação Celular/genética , Elementos de DNA Transponíveis/genética , Edição de Genes/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Macaca mulatta/genética , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Linhagem Celular , Feminino , Fibroblastos/citologia , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Filogenia , Pele/citologia , Transfecção , Transgenes , Transposases/genética
8.
Cells ; 9(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167468

RESUMO

Induced pluripotent stem cells (iPSCs) hold enormous potential for the development of cell-based therapies; however, the safety and efficacy of potential iPSC-based treatments need to be verified in relevant animal disease models before their application in the clinic. Here, we report the derivation of iPSCs from common marmoset monkeys (Callithrix jacchus) using self-replicating mRNA vectors based on the Venezuelan equine encephalitis virus (VEE-mRNAs). By transfection of marmoset fibroblasts with VEE-mRNAs carrying the human OCT4, KLF4, SOX2, and c-MYC and culture in the presence of small molecule inhibitors CHIR99021 and SB431542, we first established intermediate primary colonies with neural progenitor-like properties. In the second reprogramming step, we converted these colonies into transgene-free pluripotent stem cells by further culturing them with customized marmoset iPSC medium in feeder-free conditions. Our experiments revealed a novel paradigm for flexible reprogramming of somatic cells, where primary colonies obtained by a single VEE-mRNA transfection can be directed either toward the neural lineage or further reprogrammed to pluripotency. These results (1) will further enhance the role of the common marmoset as animal disease model for preclinical testing of iPSC-based therapies and (2) establish an in vitro system to experimentally address developmental signal transduction pathways in primates.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Biomarcadores/metabolismo , Callithrix , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/genética , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Cariotipagem , Fator 4 Semelhante a Kruppel , Neurogênese/efeitos dos fármacos , Neurogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Mol Reprod Dev ; 76(1): 22-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18425774

RESUMO

Epigenetic re-programming is an important event in the development of primordial germ cells (PGC) into functional gametes, characterized by genome-wide erasure of DNA methylation and re-establishment of epigenetic marks, a process essential for restoration of the potential for totipotency. In this study changes in the methylation status of centromeric repeats and two IGF2-H19 differentially methylated domain (DMD) sequences were examined in porcine PGC between Days 24 and 31 of pregnancy. The methylation levels of centromeric repeats and IGF2-H19 DMD sequences decreased rapidly from Days 24 to 28 in both male and female PGC. At Days 30 and 31 of pregnancy centromeric repeats and IGF2-H19 DMD sequences acquired new methylation in male PGC, while in female PGC these sequences were completely demethylated by Day 30 and remained hypomethylated at Day 31. To characterize methylation changes that PGC undergo in culture, the methylation status of embryonic germ cells (EGCs) derived from PGC at Day 26 of pregnancy was examined. Centromeric repeats and IGF2-H19 DMD sequences were similarly methylated in both male and female EGC and hypermethylated in female EGC compared with female PGC at the same embryonic age. Our results show that, similar to murine PGC, porcine PGC undergo genome-wide DNA demethylation shortly after arrival in the genital ridges. When placed in culture porcine PGC terminate their demethylation program and may acquire new DNA methylation marks. To our knowledge, this is the first report regarding epigenetic re-programming of genital ridge PGC in the pig.


Assuntos
Células Germinativas/metabolismo , Suínos/metabolismo , Animais , Separação Celular , Centrômero , Feminino , Masculino , Metilação
10.
PLoS One ; 14(2): e0210402, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30707699

RESUMO

Orthopedic device-related infection (ODRI) is a potentially devastating complication arising from the colonization of the device with bacteria, such as Staphylococcus aureus. The aim of this study was to determine if intraoperative loading of a clinically approved calcium phosphate (CaP) coating with gentamicin can protect from ODRI in vivo. First, CaP-coated titanium aluminium niobium (TAN) discs were used to investigate the adsorption and release kinetics of gentamicin in vitro. Gentamicin loading and subsequent release from the coating were both rapid, with maximum loading occurring following one second of immersion, and >95% gentamicin released within 15 min in aqueous solution, respectively. Second, efficacy of the gentamicin-loaded CaP coating for preventing ODRI in vivo was investigated using a CaP-coated unicortical TAN screw implanted into the proximal tibia of skeletally mature female Wistar rats, following inoculation of the implant site with S. aureus. Gentamicin-loading prevented ODRI in 7/8 animals, whereas 9/9 of the non-gentamicin treated animals were infected after 7 days. In conclusion, gentamicin can be rapidly and simply loaded onto, and released from, CaP-based implant coatings, and this is an effective strategy for preventing peri-operative S. aureus-induced ODRI in vivo.


Assuntos
Fosfatos de Cálcio/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Gentamicinas/farmacologia , Cuidados Intraoperatórios , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/crescimento & desenvolvimento , Ligas/farmacologia , Animais , Parafusos Ósseos , Feminino , Nióbio/farmacologia , Ratos , Ratos Wistar , Tíbia/metabolismo , Tíbia/microbiologia , Tíbia/patologia
11.
Viruses ; 11(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694178

RESUMO

The transmission of Macacine alphaherpesvirus 1 (McHV-1) from macaques, the natural host, to humans causes encephalitis. In contrast, human infection with Cercopithecine alphaherpesvirus 2 (CeHV-2), a closely related alphaherpesvirus from African vervet monkeys and baboons, has not been reported and it is believed that CeHV-2 is apathogenic in humans. The reasons for the differential neurovirulence of McHV-1 and CeHV-2 have not been explored on a molecular level, in part due to the absence of systems for the production of recombinant viruses. Here, we report the generation of a fosmid-based system for rescue of recombinant CeHV-2. Moreover, we show that, in this system, recombineering can be used to equip CeHV-2 with reporter genes. The recombinant CeHV-2 viruses replicated with the same efficiency as uncloned, wt virus and allowed the identification of cell lines that are highly susceptible to CeHV-2 infection. Collectively, we report a system that allows rescue and genetic modification of CeHV-2 and likely other alphaherpesviruses. This system should aid future analysis of CeHV-2 biology.


Assuntos
Genes Reporter , Simplexvirus/genética , Animais , Linhagem Celular , Chlorocebus aethiops , DNA Viral/genética , Engenharia Genética , Genoma Viral/genética , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simplexvirus/fisiologia , Células Vero , Proteínas Virais/genética , Tropismo Viral , Replicação Viral
12.
Nat Cell Biol ; 21(6): 687-699, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160711

RESUMO

We recently derived mouse expanded potential stem cells (EPSCs) from individual blastomeres by inhibiting the critical molecular pathways that predispose their differentiation. EPSCs had enriched molecular signatures of blastomeres and possessed developmental potency for all embryonic and extra-embryonic cell lineages. Here, we report the derivation of porcine EPSCs, which express key pluripotency genes, are genetically stable, permit genome editing, differentiate to derivatives of the three germ layers in chimeras and produce primordial germ cell-like cells in vitro. Under similar conditions, human embryonic stem cells and induced pluripotent stem cells can be converted, or somatic cells directly reprogrammed, to EPSCs that display the molecular and functional attributes reminiscent of porcine EPSCs. Importantly, trophoblast stem-cell-like cells can be generated from both human and porcine EPSCs. Our pathway-inhibition paradigm thus opens an avenue for generating mammalian pluripotent stem cells, and EPSCs present a unique cellular platform for translational research in biotechnology and regenerative medicine.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Blastômeros/citologia , Blastômeros/metabolismo , Linhagem da Célula/genética , Células-Tronco Embrionárias/citologia , Camadas Germinativas/crescimento & desenvolvimento , Camadas Germinativas/metabolismo , Humanos , Camundongos , Medicina Regenerativa , Transdução de Sinais/genética , Suínos , Trofoblastos/citologia , Trofoblastos/metabolismo
13.
Cloning Stem Cells ; 10(2): 263-76, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18373476

RESUMO

Fetal bovine serum (FBS) is a commonly used medium supplement with variable and undefined composition, which presents problems in culture of pluripotent stem cells. The purpose of this study was to determine if FBS can be replaced with Knockout Serum Replacement (KSR), a defined medium supplement, and to examine the effects of FBS and growth factors on short- and long-term culture of pig embryonic germ cells (EGC). No significant differences were observed in total and mean colony areas in primary cultures between FBS- and KSR-supplemented medium (421 x 10(3) mum(2) vs. 395 x 10(3) microm(2), p = 0.68, n = 11, and 6375 microm(2) vs. 6407 microm(2), p = 0.885, respectively). Total and mean colony areas were significantly larger in KSR-supplemented medium compared with medium supplemented with KSR and growth factors (505 x 10(3) microm(2) vs. 396 x 10(3) microm(2), p = 0.016, n = 12, and 8769 microm(2) vs. 6513 microm(2), p = 0.003, respectively). The cultures proliferated for significantly higher numbers of passages in FBS-supplemented medium and in medium supplemented with KSR and growth factors compared with medium containing KSR alone (31.1 vs. 21.9, p = 0.004, n = 10, and 35.5 vs. 21.6, p = 002, n = 10, respectively). Porcine EGC maintained in serum-free conditions were positive for pluripotent stem cell markers, maintained stable karyotypes for up to 54 passages, and were capable of differentiating in vitro into cells from the three primary germ layers. These results will help improve and standardize culture of pluripotent stem cells in the pig.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Pluripotentes/citologia , Animais , Células Cultivadas , Meios de Cultura Livres de Soro , Células-Tronco Embrionárias/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Cariotipagem , Fator Inibidor de Leucemia/farmacologia , Células-Tronco Pluripotentes/fisiologia , Soro , Fator de Células-Tronco/farmacologia , Suínos
14.
PLoS One ; 13(9): e0204580, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261016

RESUMO

Following a certain type-specific number of mitotic divisions, terminally differentiated cells undergo proliferative senescence, thwarting efforts to expand different cell populations in vitro for the needs of scientific research or medical therapies. The primary cause of this phenomenon is the progressive shortening of the telomeres and the subsequent activation of cell cycle control pathways leading to a block of cell proliferation. Restoration of telomere length by transgenic expression of telomerase reverse transcriptase (TERT) usually results in bypassing of the replicative senescence and ultimately in cell immortalization. To date, there have not been any reports regarding immortalization of cells from common marmoset (Callithrix jacchus), an important non-human primate model for various human diseases, with the use of exogenous human TERT (hTERT). In this study, marmoset fibroblasts were successfully immortalized with transposon-integrated transgenic hTERT and expanded in vitro for over 500 population doublings. Calculation of population doubling levels (PDL) showed that the derived hTERT-transgenic lines had significantly higher proliferation potential than the wild-type fibroblasts, which reached only a maximum of 46 doublings. However, the immortalized cells exhibited differences in the morphology compared with the control fibroblasts and transcriptome analysis also revealed changes in the gene expression patterns. Finally, the karyotypes of all hTERT-transgenic cell lines showed various aberrations such as presence of extra Chromosome 17, isochromosome 21q, or tetraploidy. By single-cell expansion of the least affected monoclonal immortalized line, one sub-clonal line with normal karyotype was established, suggesting the possibility to derive immortal marmoset cells with normal karyotypes. The results of this study are an important step towards the development and optimization of methods for the production of immortalized cells from common marmoset monkeys.


Assuntos
Callithrix , Fibroblastos/citologia , Fibroblastos/enzimologia , Telomerase/genética , Animais , Linhagem Celular Transformada , Proliferação de Células/genética , Células Cultivadas , Senescência Celular/genética , Elementos de DNA Transponíveis/genética , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Cariotipagem , Proteínas Recombinantes/genética , Homeostase do Telômero/genética
15.
Cloning Stem Cells ; 9(1): 63-82, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17386015

RESUMO

The period immediately after birth is a vital time for all newborn calves as the cardiovascular, respiratory, and other organ systems adapt to life ex utero. Reported neonatal mortality rates suggest this period to be especially critical in cloned calves; yet prospective, controlled studies on the physiological status of these calves are lacking. The objectives of this study were to compare neonatal (birth to 48 h of age) physical and clinical characteristics and placental morphology of cloned and embryo transfer control calves delivered by cesarean section after induced labor. All calves were raised under specialized neonatal-care protocols at a large-animal veterinary research and teaching hospital. Cloned calves were similar to controls for many parameters studied. Notable exceptions included developmental delays of important physical adjustment parameters and enlargement of the umbilical region. Placentas associated with cloned calves contained fewer total placentomes, a twofold increase in surface area and mass per placentome, and a shift in placentome morphology toward larger, flatter placentomes. The most striking clinical variations detected in clones were hypoglycemia and hyperfructosemia, both measures of carbohydrate metabolism. Because the placenta is known to be the source of plasma fructose in newborn calves, increased fructose production by the cloned placenta may be an important factor in the etiology of umbilical and cardiac anomalies in clones observed in this and other studies.


Assuntos
Animais Recém-Nascidos/anormalidades , Metabolismo dos Carboidratos , Doenças dos Bovinos/fisiopatologia , Bovinos/anormalidades , Clonagem de Organismos/efeitos adversos , Cardiopatias/fisiopatologia , Animais , Animais Recém-Nascidos/metabolismo , Bovinos/metabolismo , Doenças dos Bovinos/sangue , Doenças dos Bovinos/patologia , Cardiopatias/sangue , Cardiopatias/patologia , Cardiopatias/veterinária , Placenta/anormalidades , Placenta/fisiopatologia
16.
Cloning Stem Cells ; 9(1): 83-96, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17386016

RESUMO

Although a majority of clones are born normal and apparently healthy, mortality rates of nearly 30% are described in many reports. Such losses are a major limitation of cloning technology and represent substantial economic investment as well as justifiable animal health and welfare concerns. Prospective, controlled studies are needed to understand fully the causes of neonatal mortality in clones and to develop preventive and therapeutic strategies to minimize losses. We report here the findings of studies on the hematologic and biochemical profiles of cloned and control calves in the immediate 48-h postpartum period. Cloned calves were similar to control calves for a majority of parameters studied including blood gases, concentrations of plasma proteins, minerals and electrolytes, and white blood cell, neutrophil, lymphocyte, and platelet counts. The most notable differences between clones and controls in this study were reduced red- and white-blood cell counts in clones at birth and 1 h of age. As a group, plasma electrolyte concentrations were more variable in clones, and the variability tended to be shifted either higher (sodium, chloride) or lower (potassium, bicarbonate) than in controls. Previously, we noted differences in carbohydrate parameters, the length of time required for clones to make the neonatal adaptation to life ex utero, and morphology of the cloned placenta. Taken together, our findings suggest that cloned calves experience greater difficulty adjusting to life ex utero and that further research is warranted to determine the nature of the relationship between the physiological differences noted here in clones at birth and concomitant abnormal placental morphology.


Assuntos
Animais Recém-Nascidos/sangue , Doenças dos Bovinos/sangue , Clonagem de Organismos/efeitos adversos , Placenta/anormalidades , Animais , Animais Recém-Nascidos/anormalidades , Contagem de Células Sanguíneas , Gasometria , Proteínas Sanguíneas/análise , Bovinos , Doenças dos Bovinos/patologia , Doenças dos Bovinos/fisiopatologia , Eletrólitos/sangue , Placenta/metabolismo , Placenta/fisiopatologia , Fatores de Tempo
17.
J Stem Cells Regen Med ; 13(1): 20-28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28684894

RESUMO

Mouse somatic cells can be reprogrammed to pluripotency by the ectopic expression of four pluripotency transcription factors, Oct4, Sox2, cmyc, and Klf4. Usually, silencing of the exogenous reprogramming factors is considered to be essential for complete reprogramming and differentiation. In the vast majority of studies, murine pluripotency transcription factor sequences have been used for the reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSC). The effectiveness of xenogeneic transcription factors in miPSC generation has not yet been investigated in detail. Here, we evaluated transposon-based vectors with four porcine pluripotency factors for their ability to reprogram mouse fetal fibroblasts (MEFs) harboring an Oct4-EGFP reporter construct to pluripotency. Additionally, we examined the effects of the non-silenced heterologous transgenes on the expression levels of key endogenous pluripotency markers and the differentiation capacities of the miPSC. Within 8 days of transfection with porcine reprogramming transcription factors the MEFs acquired typical compact miPSC morphology and upregulated expression of endogenous Oct4 and other critical pluripotency genes. Consequently, the transgenes under the control of the TetO promoter became silenced, while the CAG-controlled constructs were expressed throughout the period of culture. Despite the continuous transgene expression, the CAG-miPSC showed normal morphology and were capable of differentiation into the three primary germ layers in vitro and in vivo. However, the expression levels of important endogenous pluripotency markers, Klf4, c-myc, Rex1, and Utf1, were significantly lower in CAG-miPSC compared with TetO-miPSC with silenced reprogramming cassettes. Surprisingly, the endogenous Oct4 and Sox2 expression levels were not affected by the residual transgene expression. Our results suggest that porcine reprogramming transcription factors are suitable for production of miPSC, but silencing of the heterologous transgenes may be necessary for complete reprogramming to pluripotency.

18.
Anim Reprod Sci ; 178: 40-49, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28126267

RESUMO

Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3ß- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl-iPSCs) and embryonic germ cells (EGCs), which have earlier been characterized as being multipotent. The SCNT efficiencies of these stem cell lines were compared with that of the two fibroblast cell lines from which the iPSC lines were derived. The blastocyst rates for the 2i LIF DOX-iPSCs were 14.7%, for the 2i FGF Pl-iPSC 10.1%, and for the EGCs 34.5% compared with the fibroblast lines yielding 36.7% and 25.2%. The fibroblast- and EGC-derived embryos were used for embryo transfer and produced live offspring at similar low rates of efficiency (3.2 and 4.0%, respectively) and with several instances of malformations. In conclusion, potentially pluripotent porcine stem cells resulted in lower rates of embryonic development upon SCNT than multipotent stem cells and differentiated somatic cells.


Assuntos
Clonagem de Organismos/veterinária , Técnicas de Transferência Nuclear/veterinária , Células-Tronco Pluripotentes/fisiologia , Suínos/genética , Suínos/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Reprogramação Celular , Clonagem de Organismos/métodos , Transferência Embrionária/veterinária , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário , Feminino , Fibroblastos/fisiologia , Proteínas de Fluorescência Verde , Masculino , Gravidez
19.
Stem Cells Dev ; 25(5): 386-94, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26691930

RESUMO

The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a complex process that involves significant epigenetic alterations in the reprogrammed cells. Epigenetic modifiers such as histone deacetylase (HDAC) inhibitors have been shown to increase the efficiency of derivation of iPSCs in humans and mice. In this study, we used three HDAC inhibitors, valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid, together with ascorbic acid, for derivation and long-term feeder-free culture of porcine iPS-like cells. In the absence of exogenous growth factors and/or small molecules, these inhibitors were able to maintain the expression of key pluripotency markers, including genes known to be specific for naive pluripotent state in mouse stem cells, for over 60 passages under feeder-free conditions. Surprisingly, the cells became dependent on HDAC inhibitors for the maintenance of proliferation. Moreover, despite showing successful integration into blastocysts upon injection, the cells were unable to undergo normal differentiation in vitro and in vivo in the form of teratomas. Our results suggest that HDAC inhibitors maintain pluripotency gene expression of porcine iPSC-like cells in long-term culture, but prevent lineage specification, requiring further optimization of culture conditions for porcine iPSC derivation.


Assuntos
Técnicas de Cultura de Células/métodos , Células Alimentadoras/citologia , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Forma Celular , Células Cultivadas , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Nus , Sus scrofa , Teratoma/patologia
20.
Cloning Stem Cells ; 7(4): 238-54, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16390260

RESUMO

Potential applications of somatic cell nuclear transfer to agriculture and medicine are currently constrained by low efficiency and high rates of embryonic, fetal, and neonatal loss. Nuclear transfer efficiency in cattle was compared between three donor-cell treatments from a single animal, between four donor-cell treatments in sequential stages of differentiation from a single cell lineage and genotype, and between the same cell type in two donors. Cumulus and granulosa donor cells resulted in a greater proportion of viable day-7 embryos than ear-skin cells; pregnancy rate and losses were not different among treatments. The least differentiated cell type in the follicular cell lineage, preantral follicle cells, resulted in fewer cloned blastocysts (11%) than cumulus (30%), granulosa (23%), and luteal (25%) donor cells. Cloned blastocysts that did develop from preantral follicle cells (75%) were more likely to progress through implantation into later stages of pregnancy than cloned blastocysts from cumulus (10%), granulosa (9%), and luteal (11%) donor cells (p < 0.05). Day-7 embryo development from granulosa cells was similar between two donors (19 vs. 24%) and proved to be a poor indicator of further development as day-30 pregnancy rates varied threefold between donors (48 vs. 15%, p < 0.05). Results reported here emphasize the crucial role of the nuclear donor cell in the outcome of the nuclear-transfer process.


Assuntos
Clonagem de Organismos , Técnicas de Transferência Nuclear , Especificidade de Órgãos/fisiologia , Animais , Blastocisto , Bovinos , Linhagem da Célula , Núcleo Celular/fisiologia , Transferência Embrionária , Feminino , Células da Granulosa/citologia , Gravidez , Resultado da Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA