Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957732

RESUMO

Glioblastoma (GBM) is the most aggressive, infiltrative, and lethal brain tumor in humans. Despite the extensive advancement in the knowledge about tumor progression and treatment over the last few years, the prognosis of GBM is still very poor due to the difficulty of targeting drugs or anticancer molecules to GBM cells. The major challenge in improving GBM treatment implicates the development of a targeted drug delivery system, capable of crossing the blood-brain barrier (BBB) and specifically targeting GBM cells. Aptamers possess many characteristics that make them ideal novel therapeutic agents for the treatment of GBM. They are short single-stranded nucleic acids (RNA or ssDNA) able to bind to a molecular target with high affinity and specificity. Several GBM-targeting aptamers have been developed for imaging, tumor cell isolation from biopsies, and drug/anticancer molecule delivery to the tumor cells. Due to their properties (low immunogenicity, long stability, and toxicity), a large number of aptamers have been selected against GBM biomarkers and tested in GBM cell lines, while only a few of them have also been tested in in vivo models of GBM. Herein, we specifically focus on aptamers tested in GBM in vivo models that can be considered as new diagnostic and/or therapeutic tools for GBM patients' treatment.


Assuntos
Antineoplásicos/química , Aptâmeros de Nucleotídeos/química , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Nanocápsulas/química , Ácidos Nucleicos/química , Animais , Antineoplásicos/farmacologia , Transporte Biológico , Biomarcadores Tumorais/metabolismo , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Técnicas In Vitro , Terapia de Alvo Molecular , Técnica de Seleção de Aptâmeros
2.
Cell Rep ; 43(9): 114751, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39276346

RESUMO

Triple negative breast cancer (TNBC) is an aggressive type of breast cancer. While most TNBCs are initially sensitive to chemotherapy, a substantial fraction acquires resistance to treatments and progresses to more advanced stages. Here, we identify the spliceosome U2 small nuclear ribonucleoprotein particle (snRNP) complex as a modulator of chemotherapy efficacy in TNBC. Transient U2 snRNP inhibition induces persistent DNA damage in TNBC cells and organoids, regardless of their homologous recombination proficiency. U2 snRNP inhibition pervasively deregulates genes involved in the DNA damage response (DDR), an effect relying on their genomic structure characterized by a high number of small exons. Furthermore, a pulse of splicing inhibition elicits long-lasting repression of DDR proteins and enhances the cytotoxic effect of platinum-based drugs and poly(ADP-ribose) polymerase inhibitors (PARPis) in multiple TNBC models. These findings identify the U2 snRNP as an actionable target that can be exploited to enhance chemotherapy efficacy in TNBCs.


Assuntos
Dano ao DNA , Splicing de RNA , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Feminino , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Linhagem Celular Tumoral , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos , Spliceossomos/metabolismo , Spliceossomos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA