Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Am J Pathol ; 192(3): 484-502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34896073

RESUMO

Leptin is an adipokine with roles in food intake and energy metabolism through its actions on neurons in the hypothalamus. The role of leptin in obesity and cardiovascular disorders is well documented. However, its influence on liver conditions such as cholestasis is poorly understood. The effects of exogenous leptin and leptin-neutralizing antibody on biliary hyperplasia, hepatic fibrosis, and inflammation in the multidrug resistance protein 2 knockout (Mdr2KO) mouse model of cholestasis were assessed by quantifying markers specific for cholangiocytes, activated hepatic stellate cells (HSCs), and cytokines. Serum and hepatic leptin were increased in Mdr2KO mice compared with FVB/NJ (FVBN) controls, and exogenous leptin enhanced biliary hyperplasia and liver fibrosis in Mdr2KO and FVBN mice. Leptin administration increased hepatic expression of C-C motif chemokine ligand 2 and IL-6 in Mdr2KO mice. In contrast, leptin-neutralizing antibody reduced intrahepatic bile duct mass and decreased HSC activation in Mdr2KO mice compared with FVBN controls. Sex-related differences were noted, with female Mdr2KO mice having more leptin than males. In cholangiocytes and LX2 cells in vitro, leptin increased phosphorylated Akt and stimulated cell proliferation. Leptin receptor siRNA and inhibitors of Akt phosphorylation impaired leptin-induced cell proliferation and proinflammatory cytokines. The current data suggest that leptin is abnormally increased in cholestatic mice, and excess leptin increases ductular reaction, hepatic fibrosis, and inflammation via leptin receptor-mediated phosphorylation of Akt in cholangiocytes and HSCs.


Assuntos
Colestase , Receptores para Leptina , Animais , Anticorpos Neutralizantes , Colestase/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células Estreladas do Fígado/metabolismo , Hiperplasia/patologia , Inflamação/patologia , Leptina/metabolismo , Leptina/farmacologia , Fígado/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores para Leptina/metabolismo
2.
Am J Pathol ; 190(3): 586-601, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31953035

RESUMO

Galanin (Gal) is a peptide with a role in neuroendocrine regulation of the liver. In this study, we assessed the role of Gal and its receptors, Gal receptor 1 (GalR1) and Gal receptor 2 (GalR2), in cholangiocyte proliferation and liver fibrosis in multidrug resistance protein 2 knockout (Mdr2KO) mice as a model of chronic hepatic cholestasis. The distribution of Gal, GalR1, and GalR2 in specific liver cell types was assessed by laser-capture microdissection and confocal microscopy. Galanin immunoreactivity was detected in cholangiocytes, hepatic stellate cells (HSCs), and hepatocytes. Cholangiocytes expressed GalR1, whereas HSCs and hepatocytes expressed GalR2. Strategies were used to either stimulate or block GalR1 and GalR2 in FVB/N (wild-type) and Mdr2KO mice and measure biliary hyperplasia and hepatic fibrosis by quantitative PCR and immunostaining of specific markers. Galanin treatment increased cholangiocyte proliferation and fibrogenesis in both FVB/N and Mdr2KO mice. Suppression of GalR1, GalR2, or both receptors in Mdr2KO mice resulted in reduced bile duct mass and hepatic fibrosis. In vitro knockdown of GalR1 in cholangiocytes reduced α-smooth muscle actin expression in LX-2 cells treated with cholangiocyte-conditioned media. A GalR2 antagonist inhibited HSC activation when Gal was administered directly to LX-2 cells, but not via cholangiocyte-conditioned media. These data demonstrate that Gal contributes not only to cholangiocyte proliferation but also to liver fibrogenesis via the coordinate activation of GalR1 in cholangiocytes and GalR2 in HSCs.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Colestase/metabolismo , Galanina/metabolismo , Cirrose Hepática/metabolismo , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Animais , Ductos Biliares/metabolismo , Proliferação de Células , Colestase/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Galanina/genética , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Knockout , Receptor Tipo 1 de Galanina/genética , Receptor Tipo 2 de Galanina/genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
3.
J Neuroinflammation ; 16(1): 69, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940161

RESUMO

BACKGROUND: Acute liver failure resulting from drug-induced liver injury can lead to the development of neurological complications called hepatic encephalopathy (HE). Hepatic transforming growth factor beta 1 (TGFß1) is upregulated due to liver failure in mice and inhibiting circulating TGFß reduced HE progression. However, the specific contributions of TGFß1 on brain cell populations and neuroinflammation during HE are not known. Therefore, the aim of this study was to characterize hepatic and brain TGFß1 signaling during acute liver failure and its contribution to HE progression using a combination of pharmacological and genetic approaches. METHODS: C57Bl/6 or neuron-specific transforming growth factor beta receptor 2 (TGFßR2) null mice (TGFßR2ΔNeu) were treated with azoxymethane (AOM) to induce acute liver failure and HE. The activity of circulating TGFß1 was inhibited in C57Bl/6 mice via injection of a neutralizing antibody against TGFß1 (anti-TGFß1) prior to AOM injection. In all mouse treatment groups, liver damage, neuroinflammation, and neurological deficits were assessed. Inflammatory signaling between neurons and microglia were investigated in in vitro studies through the use of pharmacological inhibitors of TGFß1 signaling in HT-22 and EOC-20 cells. RESULTS: TGFß1 was expressed and upregulated in the liver following AOM injection. Pharmacological inhibition of TGFß1 after AOM injection attenuated neurological decline, microglia activation, and neuroinflammation with no significant changes in liver damage. TGFßR2ΔNeu mice administered AOM showed no effect on liver pathology but significantly reduced neurological decline compared to control mice. Microglia activation and neuroinflammation were attenuated in mice with pharmacological inhibition of TGFß1 or in TGFßR2ΔNeu mice. TGFß1 increased chemokine ligand 2 (CCL2) and decreased C-X3-C motif ligand 1 (CX3CL1) expression in HT-22 cells and reduced interleukin-1 beta (IL-1ß) expression, tumor necrosis factor alpha (TNFα) expression, and phagocytosis activity in EOC-20 cells. CONCLUSION: Increased circulating TGFß1 following acute liver failure results in activation of neuronal TGFßR2 signaling, driving neuroinflammation and neurological decline during AOM-induced HE.


Assuntos
Córtex Cerebral/patologia , Encefalopatia Hepática/etiologia , Falência Hepática Aguda/complicações , Falência Hepática Aguda/patologia , Neurônios/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/deficiência , Fator de Crescimento Transformador beta1/sangue , Animais , Anticorpos/uso terapêutico , Azoximetano/toxicidade , Benzamidas/farmacologia , Carcinógenos/toxicidade , Linhagem Celular Transformada , Modelos Animais de Doenças , Encefalopatia Hepática/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Isoquinolinas/farmacologia , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
4.
Gene Expr ; 18(3): 171-185, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-29895352

RESUMO

Acute liver failure is a devastating consequence of hepatotoxic liver injury that can lead to the development of hepatic encephalopathy. There is no consensus on the best model to represent these syndromes in mice, and therefore the aim of this study was to classify hepatic and neurological consequences of azoxymethane- and thioacetamide-induced liver injury. Azoxymethane-treated mice were euthanized at time points representing absence of minor and significant stages of neurological decline. Thioacetamide-treated mice had tissue collected at up to 3 days following daily injections. Liver histology, serum chemistry, bile acids, and cytokine levels were measured. Reflexes, grip strength measurement, and ataxia were calculated for all groups. Brain ammonia, bile acid levels, cerebral edema, and neuroinflammation were measured. Finally, in vitro and in vivo assessments of blood-brain barrier function were performed. Serum transaminases and liver histology demonstrate that both models generated hepatotoxic liver injury. Serum proinflammatory cytokine levels were significantly elevated in both models. Azoxymethane-treated mice had progressive neurological deficits, while thioacetamide-treated mice had inconsistent neurological deficits. Bile acids and cerebral edema were increased to a higher degree in azoxymethane-treated mice, while cerebral ammonia and neuroinflammation were greater in thioacetamide-treated mice. Blood-brain barrier permeability exists in both models but was likely not due to direct toxicity of azoxymethane or thioacetamide on brain endothelial cells. In conclusion, both models generate acute liver injury and hepatic encephalopathy, but the requirement of a single injection and the more consistent neurological decline make azoxymethane treatment a better model for acute liver failure with hepatic encephalopathy.


Assuntos
Azoximetano/toxicidade , Modelos Animais de Doenças , Encefalopatia Hepática/patologia , Tioacetamida/toxicidade , Animais , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatia Hepática/etiologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 18(11)2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125588

RESUMO

Hepatic cholestasis is associated with a significant suppression of the hypothalamus-pituitary-adrenal axis (HPA). In the present study, we tested the hypothesis that activation of the HPA axis by corticosterone treatment can reverse liver inflammation and fibrosis in a multidrug resistance protein 2 knockout (MDR2KO) transgenic mouse model of hepatic cholestasis. Friend Virus B NIH-Jackson (FVBN) control and MDR2KO male and female mice were treated with vehicle or corticosterone for two weeks, then serum and liver analyses of hepatic cholestasis markers were performed. Indicators of inflammation, such as increased numbers of macrophages, were determined. MDR2KO mice had lower corticotropin releasing hormone and corticosterone levels than FVBN controls in the serum. There was a large accumulation of CD68 and F4/80 macrophages in MDR2KO mice livers, which indicated greater inflammation compared to FVBNs, an effect reversed by corticosterone treatment. Intrahepatic biliary duct mass, collagen deposition and alpha smooth muscle actin (αSMA) were found to be much higher in livers of MDR2KO mice than in controls; corticosterone treatment significantly decreased these fibrosis markers. When looking at the gender-specific response to corticosterone treatment, male MDR2KO mice tended to have a more pronounced reversal of liver fibrosis than females treated with corticosterone.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Glucocorticoides/administração & dosagem , Inflamação/genética , Cirrose Hepática/genética , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/sangue , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/sangue , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/sangue , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Knockout , Sistema Hipófise-Suprarrenal/metabolismo , Caracteres Sexuais , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
6.
Biochim Biophys Acta ; 1831(8): 1412-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747828

RESUMO

Although liver fatty acid binding protein (L-FABP) binds fibrates and PPARα in vitro and enhances fibrate induction of PPARα in transformed cells, the functional significance of these findings is unclear, especially in normal hepatocytes. Studies with cultured primary mouse hepatocytes show that: 1) At physiological (6mM) glucose, fibrates (bezafibrate, fenofibrate) only weakly activated PPARα transcription of genes in LCFA ß-oxidation; 2) High (11-20mM) glucose, but not maltose (osmotic control), significantly potentiated fibrate-induction of mRNA of these and other PPARα target genes to increase LCFA ß-oxidation. These effects were associated with fibrate-mediated redistribution of L-FABP into nuclei-an effect prolonged by high glucose-but not with increased de novo fatty acid synthesis from glucose; 3) Potentiation of bezafibrate action by high glucose required an intact L-FABP/PPARα signaling pathway as shown with L-FABP null, PPARα null, PPARα inhibitor-treated WT, or PPARα-specific fenofibrate-treated WT hepatocytes. High glucose alone in the absence of fibrate was ineffective. Thus, high glucose potentiation of PPARα occurred through FABP/PPARα rather than indirectly through other PPARs or glucose induced signaling pathways. These data indicated L-FABP's importance in fibrate-induction of hepatic PPARα LCFA ß-oxidative genes, especially in the context of high glucose levels.


Assuntos
Bezafibrato/farmacologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Fenofibrato/farmacologia , Glucose/farmacologia , Hepatócitos/metabolismo , Hipolipemiantes/farmacologia , PPAR alfa/metabolismo , Edulcorantes/farmacologia , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Hepatócitos/citologia , Camundongos , Camundongos Mutantes , Oxirredução/efeitos dos fármacos , PPAR alfa/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
7.
Am J Physiol Gastrointest Liver Physiol ; 307(2): G164-76, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24875102

RESUMO

Although human liver fatty acid-binding protein (FABP1) T94A variant has been associated with nonalcoholic fatty liver disease and reduced ability of fenofibrate to lower serum triglycerides (TG) to target levels, molecular events leading to this phenotype are poorly understood. Cultured primary hepatocytes from female human subjects expressing the FABP1 T94A variant exhibited increased neutral lipid (TG, cholesteryl ester) accumulation associated with (1) upregulation of total FABP1, a key protein stimulating mitochondrial glycerol-3-phosphate acyltransferase (GPAM), the rate-limiting enzyme in lipogenesis; (2) increased mRNA expression of key enzymes in lipogenesis (GPAM, LPIN2) in heterozygotes; (3) decreased mRNA expression of microsomal triglyceride transfer protein; (4) increased secretion of ApoB100 but not TG; (5) decreased long-chain fatty acid (LCFA) ß-oxidation. TG accumulation was not due to any increase in LCFA uptake, de novo lipogenesis, or the alternate monoacylglycerol O-acyltransferase pathway in lipogenesis. Despite increased expression of total FABP1 mRNA and protein, fenofibrate-mediated FABP1 redistribution to nuclei and ligand-induced peroxisome proliferator-activated receptor (PPAR-α) transcription of LCFA ß-oxidative enzymes (carnitine palmitoyltransferase 1A, carnitine palmitoyltransferase 2, and acyl-coenzyme A oxidase 1, palmitoyl) were attenuated in FABP1 T94A hepatocytes. Although the phenotype of FABP1 T94A variant human hepatocytes exhibits some similarities to that of FABP1-null or PPAR-α-null hepatocytes and mice, expression of FABP1 T94A variant did not abolish or reduce ligand binding. Thus the FABP1 T94A variant represents an altered/reduced function mutation resulting in TG accumulation.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , PPAR alfa/metabolismo , Apolipoproteína B-100/metabolismo , Células Cultivadas , Ésteres do Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Fenofibrato/farmacologia , Regulação Enzimológica da Expressão Gênica , Variação Genética , Hepatócitos/efeitos dos fármacos , Heterozigoto , Homozigoto , Humanos , Hipolipemiantes/farmacologia , Lipogênese/genética , Pessoa de Meia-Idade , Oxirredução , PPAR alfa/agonistas , Fenótipo , Ligação Proteica , Transporte Proteico , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica , Triglicerídeos/metabolismo
8.
Res Sq ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38313276

RESUMO

Gulf War Illness (GWI) describes a series of symptoms suffered by veterans of the Gulf war consisting of cognitive, neurological and gastrointestinal dysfunctions. Two chemicals associated with GWI are the insecticide permethrin (PER) and the nerve gas prophylactic pyridostigmine-bromide (PB). In this study we assessed the effects of PER and PB exposure on pathology and subsequent alcohol (EtOH)-induced liver injury, and the influence of a macrophage depletor, PLX3397, on EtOH-induced liver damage in PER/PB- treated mice. Male C57BL/6 mice were injected daily with vehicle or PER/PB for 10 days, followed by 4 months recovery, then treatment with PLX3397 and a chronic-plus-single-binge EtOH challenge for 10 days. PER/PB exposure resulted in the protracted increase in liver transaminases in the serum and induced chronic low-level microvesicular steatosis and inflammation in GWI vs Naïve mice up to 4 months after cessation of exposure. Furthermore, prior exposure to PER/PB also resulted in exacerbated response to EtOH-induced liver injury, with enhanced steatosis, ductular reaction and fibrosis. The enhanced EtOH-induced liver damage in GWI-mice was attenuated by strategies designed to deplete macrophages in the liver. Taken together, these data suggest that exposure to GWI-related chemicals may alter the liver's response to subsequent ethanol exposure.

9.
Sci Rep ; 14(1): 14981, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951546

RESUMO

Gulf War Illness (GWI) describes a series of symptoms suffered by veterans of the Gulf war, consisting of cognitive, neurological and gastrointestinal dysfunctions. Two chemicals associated with GWI are the insecticide permethrin (PER) and the nerve gas prophylactic pyridostigmine-bromide (PB). In this study we assessed the effects of PER and PB exposure on the pathology and subsequent alcohol (EtOH)-induced liver injury, and the influence of a macrophage depletor, PLX3397, on EtOH-induced liver damage in PER/PB-treated mice. Male C57BL/6 mice were injected daily with vehicle or PER/PB for 10 days, followed by 4 months recovery, then treatment with PLX3397 and a chronic-plus-single-binge EtOH challenge for 10 days. PER/PB exposure resulted in the protracted increase in liver transaminases in the serum and induced chronic low-level microvesicular steatosis and inflammation in GWI vs Naïve mice up to 4 months after cessation of exposure. Furthermore, prior exposure to PER/PB also resulted in exacerbated response to EtOH-induced liver injury, with enhanced steatosis, ductular reaction and fibrosis. The enhanced EtOH-induced liver damage in GWI-mice was attenuated by strategies designed to deplete macrophages in the liver. Taken together, these data suggest that exposure to GWI-related chemicals may alter the liver's response to subsequent ethanol exposure.


Assuntos
Etanol , Camundongos Endogâmicos C57BL , Síndrome do Golfo Pérsico , Brometo de Piridostigmina , Animais , Síndrome do Golfo Pérsico/induzido quimicamente , Síndrome do Golfo Pérsico/patologia , Masculino , Brometo de Piridostigmina/farmacologia , Camundongos , Etanol/efeitos adversos , Etanol/toxicidade , Permetrina/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Inseticidas/toxicidade , Inseticidas/efeitos adversos , Modelos Animais de Doenças
10.
Am J Physiol Gastrointest Liver Physiol ; 304(3): G241-56, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23238934

RESUMO

Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very-long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated peroxisome proliferator activated receptor-α (PPARα) transcription of proteins involved in long-chain fatty acid (LCFA) ß-oxidation. This issue was addressed in cultured primary hepatocytes from wild-type, L-FABP-null, and PPARα-null mice with these major findings: 1) PUFA-mediated increase in the expression of PPARα-regulated LCFA ß-oxidative enzymes, LCFA/LCFA-CoA binding proteins (L-FABP, ACBP), and PPARα itself was L-FABP dependent; 2) PPARα transcription, robustly potentiated by high glucose but not maltose, a sugar not taken up, correlated with higher protein levels of these LCFA ß-oxidative enzymes and with increased LCFA ß-oxidation; and 3) high glucose altered the potency of n-3 relative to n-6 PUFA. This was not due to a direct effect of glucose on PPARα transcriptional activity nor indirectly through de novo fatty acid synthesis from glucose. Synergism was also not due to glucose impacting other signaling pathways, since it was observed only in hepatocytes expressing both L-FABP and PPARα. Ablation of L-FABP or PPARα as well as treatment with MK886 (PPARα inhibitor) abolished/reduced PUFA-mediated PPARα transcription of these genes, especially at high glucose. Finally, the PUFA-enhanced L-FABP distribution into nuclei with high glucose augmentation of the L-FABP/PPARα interaction reveals not only the importance of L-FABP for PUFA induction of PPARα target genes in fatty acid ß-oxidation but also the significance of a high glucose enhancement effect in diabetes.


Assuntos
Proteínas de Ligação a Ácido Graxo/farmacologia , Ácidos Graxos Insaturados/farmacologia , Glucose/farmacologia , PPAR alfa/biossíntese , Acil-CoA Oxidase/metabolismo , Animais , Western Blotting , Carnitina O-Palmitoiltransferase/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Maltose/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Concentração Osmolar , PPAR alfa/genética , Reação em Cadeia da Polimerase em Tempo Real , Ácidos Esteáricos/metabolismo , Transcrição Gênica/efeitos dos fármacos
11.
J Biol Chem ; 286(49): 42749-42757, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21998312

RESUMO

Cellular retinoic acid-binding protein II (CRABP-II) undergoes nuclear translocation upon binding of retinoic acid (RA). In the nucleus, CRABP-II directly binds to the nuclear receptor RAR to form a complex through which RA is "channeled" from the binding protein to the receptor. CRABP-II thus facilitates the ligation of RAR and markedly enhances its transcriptional activity. The primary sequence of CRABP-II contains three putative SUMOylation sites, centered at K45, K87, and K102. We show here that RA induces interactions of CRABP-II with the E2 SUMO ligase Ubc9 and triggers SUMOylation of the protein both in vitro and in cultured cells. Mutagenesis analyses demonstrate that K102 is the sole CRABP-II residue to be SUMOylated in response to RA. Mutation of this residue abolishes the ability of CRABP-II to undergo nuclear translocation in response RA and thus impairs CRABP-II-mediated activation of RAR. Additional observations demonstrate that apo-CRABP-II is associated with endoplasmic reticulum (ER), and that RA triggers the dissociation of CRABP-II from this location. Furthermore, we show that RA-induced dissociation of CRABP-II from the ER requires SUMOylation of K102. Hence, SUMOylation of K102 in response to RA binding is critical for dissociation of CRABP-II from ER and, consequently, for mobilization of the protein to nucleus and for its cooperation with RAR.


Assuntos
Transporte Ativo do Núcleo Celular , Receptores do Ácido Retinoico/metabolismo , Sumoilação , Tretinoína/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Transcrição Gênica , Enzimas de Conjugação de Ubiquitina/metabolismo
12.
Cells ; 10(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34440614

RESUMO

Recent studies on liver disease burden worldwide estimated that cirrhosis is the 11th most common cause of death globally, and there is a great need for new therapies to limit the progression of liver injuries in the early stages. Cholestasis is caused by accumulation of hydrophobic bile acids (BA) in the liver due to dysfunctional BA efflux or bile flow into the gall bladder. Therefore, strategies to increase detoxification of hydrophobic BA and downregulate genes involved in BA production are largely investigated. Farnesoid X receptor (FXR) has a central role in BA homeostasis and recent publications revealed that changes in autophagy due to BA-induced reactive oxygen species and increased anti-oxidant response via nuclear factor E2-related factor 2 (NRF2), result in dysregulation of FXR signaling. Several mechanistic studies have identified new dysfunctions of the cholestatic liver at cellular and molecular level, opening new venues for developing more performant therapies.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase/tratamento farmacológico , Fármacos Gastrointestinais/uso terapêutico , Hepatopatias/tratamento farmacológico , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Colestase/complicações , Colestase/diagnóstico , Colestase/metabolismo , Fármacos Gastrointestinais/efeitos adversos , Humanos , Ligantes , Fígado/metabolismo , Fígado/patologia , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Hepatopatias/metabolismo , Terapia de Alvo Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
13.
Front Pharmacol ; 12: 645703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841164

RESUMO

The liver is a major metabolic organ and an immunologically complex organ. It produces and uses many substances such as acute phase proteins, cytokines, chemokines, and complementary components to maintain the balance between immunity and tolerance. Interleukins are important immune control cytokines, that are produced by many body cells. In liver injury, interleukins are produced in large amount by various cell types, and act as pro-inflammatory (e.g. interleukin (IL)-6, IL-13, IL-17, and IL-33) as well as anti-inflammatory (e.g. IL-10) functions in hepatic cells. Recently, interleukins are regarded as interesting therapeutic targets for the treatment of liver fibrosis patients. Hepatic cells such as hepatocytes, hepatic stellate cells, and hepatic macrophages are involved to the initiation, perpetuation, and resolution of fibrosis. The understanding of the role of interleukins in such cells provides opportunity for the development of therapeutic target drugs. This paper aims to understand the functional roles of interleukins in hepatic and immune cells when the liver is damaged, and suggests the possibility of interleukins as a new treatment target in liver fibrosis.

14.
Biochim Biophys Acta ; 1788(2): 425-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18992218

RESUMO

Although cell-penetrating peptides (CPP) facilitate endocytic uptake of proteins, little is known regarding the extent to which CPPs facilitate protein cargo exit from endocytic vesicles for targeting to other intracellular sites. Since the plasma membrane and less so intracellular membranes contain cholesterol, the fluorescent sterol analogues dansyl-cholestanol (DChol) and dehydroergosterol (DHE) were used to monitor the uptake and intracellular distribution of fluorescent-tagged acyl coenzyme A binding protein (ACBP) into COS-7 cells and rat hepatoma cells. Confocal microscopy colocalized DChol and Texas Red-ACBP (TR-ACBP) with markers for the major endocytosis pathways, especially fluorescent-labeled cholera toxin (marker of ganglioside GM1 in plasma membrane lipid rafts) and dextran (macropinocytosis marker), but less so with transferrin (clathrin-mediated endocytosis marker). These findings were confirmed by multiphoton laser scanning microscopy colocalization of TR-ACBP with DHE (naturally-fluorescent sterol) and by double immunofluorescence labeling of native endogenous ACBP. Serum greatly and Pep-1 further 2.4-fold facilitated uptake of TR-ACBP, but neither altered the relative proportion of TR-ACBP colocalized with membranes/organelles (nearly 80%) vs cytoplasm and/or nucleoplasm (20%). Interestingly, Pep-1 selectively increased TR-ACBP associated with mitochondria while concomitantly decreasing that in endoplasmic reticulum. In summary, fluorescent sterols (DChol, DHE) were useful markers for comparing the distributions of both transported and endogenous proteins. Pep-1 modestly enhanced the translocation and altered the intracellular targeting of exogenous-delivered (TR-ACBP) in living cells.


Assuntos
Proteínas de Transporte/metabolismo , Cisteamina/análogos & derivados , Peptídeos/metabolismo , Esteróis/análise , Esteróis/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Sobrevivência Celular , Chlorocebus aethiops , Cisteamina/metabolismo , Endocitose , Espectrometria de Massas , Espectrometria de Fluorescência , Xantenos
15.
Sci Rep ; 10(1): 16024, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994489

RESUMO

The orexigenic peptide ghrelin (Ghr) stimulates hunger signals in the hypothalamus via growth hormone secretagogue receptor (GHS-R1a). Gastric Ghr is synthetized as a preprohormone which is proteolytically cleaved, and acylated by a membrane-bound acyl transferase (MBOAT). Circulating Ghr is reduced in cholestatic injuries, however Ghr's role in cholestasis is poorly understood. We investigated Ghr's effects on biliary hyperplasia and hepatic fibrosis in Mdr2-knockout (Mdr2KO) mice, a recognized model of cholestasis. Serum, stomach and liver were collected from Mdr2KO and FVBN control mice treated with Ghr, des-octanoyl-ghrelin (DG) or vehicle. Mdr2KO mice had lower expression of Ghr and MBOAT in the stomach, and lower levels of circulating Ghr compared to WT-controls. Treatment of Mdr2KO mice with Ghr improved plasma transaminases, reduced biliary and fibrosis markers. In the liver, GHS-R1a mRNA was expressed predominantly in cholangiocytes. Ghr but not DG, decreased cell proliferation via AMPK activation in cholangiocytes in vitro. AMPK inhibitors prevented Ghr-induced FOXO1 nuclear translocation and negative regulation of cell proliferation. Ghr treatment reduced ductular reaction and hepatic fibrosis in Mdr2KO mice, regulating cholangiocyte proliferation via GHS-R1a, a G-protein coupled receptor which causes increased intracellular Ca2+ and activation of AMPK and FOXO1, maintaining a low rate of cholangiocyte proliferation.


Assuntos
Colestase/tratamento farmacológico , Grelina/administração & dosagem , Cirrose Hepática/prevenção & controle , Receptores de Grelina/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Acetiltransferases/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colestase/genética , Colestase/metabolismo , Modelos Animais de Doenças , Proteína Forkhead Box O1/metabolismo , Grelina/metabolismo , Grelina/farmacologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Camundongos Knockout , Transaminases/sangue , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
16.
Cureus ; 12(4): e7783, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32461855

RESUMO

Background Allergic rhinitis (AR) is a chronic and frequent condition characterized by an excessive response of the immune system to innocent substances encountered in the nasal mucosa. These reactions are mediated by many factors, including chemokines. Chemokine ligand 3 (CCL3, a macrophage inflammatory protein 1α) is a chemokine implicated in the activation of mast cells - white cells shown to be highly involved in orchestrating allergic reactions. The present study evaluated the role of CCL3 in AR. Material and methods Thirty-nine participants, including 24 patients with AR and 15 healthy controls, were evaluated for allergies to dust mites, cat and dog danders, cockroaches (Blatella germanica), molds, grasses, weeds, and tree pollen using skin prick tests. Participants were also evaluated for inflammatory conditions by measuring total blood count with differential; concentrations of rheumatoid factor, fibrinogen, and C-reactive protein; and erythrocyte sedimentation rate. CCL3 in blood samples was measured at the Immunology Laboratory, Cantacuzino National Institute for Military Medical Research and Development, Bucharest, Romania, using Human Multianalyte Profiling Base Kits (R&D Systems Inc., Minneapolis, MN). Results Mean serum CCL3 concentration was significantly higher in patients with AR than in controls (15.03 ± 7.11 pg/ml vs. 8.34 ± 4.46 pg/ml, p = 0.001 [t-test] and p = 0.026 [Mann-Whitney test]). CCL3 concentrations correlated with polysensitization, defined as two or more positive prick tests per patient (r = 0.325, p = 0.046) and seasonal AR (r = 0.482, p = 0.002). Conclusions Elevated levels of CCL3 were seen in our patients with AR. We have observed correlations with polysensitization and seasonal allergies. These results suggest that chemokines might play an important role in the pathogenesis of AR. In the future, chemokines might be used in endotype classification of patients with AR and as a possible target in the treatment of AR.

17.
Exp Ther Med ; 20(3): 2352-2360, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32765714

RESUMO

Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.

18.
Toxicol Sci ; 170(2): 549-561, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132129

RESUMO

Acute liver failure is a serious consequence of acetaminophen (APAP)-induced hepatotoxic liver injury with high rates of morbidity and mortality. Transforming growth factor beta 1 (TGFß1) is elevated during liver injury and influences hepatocyte senescence during APAP-induced hepatotoxicity. This study investigated TGFß1 signaling in the context of inflammation, necrotic cell death, and oxidative stress during APAP-induced liver injury. Male C57Bl/6 mice were injected with 600 mg/kg APAP to generate liver injury in the presence or absence of the TGFß receptor 1 inhibitor, GW788388, 1 h prior to APAP administration. Acetaminophen-induced liver injury was characterized using histological and biochemical measures. Transforming growth factor beta 1 expression and signal transduction were assessed using immunohistochemistry, Western blotting and ELISA assays. Hepatic necrosis, liver injury, cell proliferation, hepatic inflammation, and oxidative stress were assessed in all mice. Acetaminophen administration significantly induced necrosis and elevated serum transaminases compared with control mice. Transforming growth factor beta 1 staining was observed in and around areas of necrosis with phosphorylation of SMAD3 observed in hepatocytes neighboring necrotic areas in APAP-treated mice. Pretreatment with GW788388 prior to APAP administration in mice reduced hepatocyte cell death and stimulated regeneration. Phosphorylation of SMAD3 was reduced in APAP mice pretreated with GW788388 and this correlated with reduced hepatic cytokine production and oxidative stress. These results support that TGFß1 signaling plays a significant role in APAP-induced liver injury by influencing necrotic cell death, inflammation, oxidative stress, and hepatocyte regeneration. In conclusion, targeting TGFß1 or downstream signaling may be a possible therapeutic target for the management of APAP-induced liver injury.


Assuntos
Acetaminofen/toxicidade , Benzamidas/farmacologia , Hepatócitos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pirazóis/farmacologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Animais , Antioxidantes , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Inflamação , Fígado/efeitos dos fármacos , Falência Hepática Aguda/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Substâncias Protetoras/farmacologia , Regeneração , Transdução de Sinais/efeitos dos fármacos
19.
Protein Expr Purif ; 58(2): 184-93, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18178100

RESUMO

Acyl coenzyme A binding protein (ACBP) has been proposed to transport fatty acyl CoAs intracellularly, facilitating their metabolism. In this study, a new mouse recombinant ACBP was produced by insertion of a histidine (his) tag at the C-terminus to allow efficient purification by Ni-affinity chromatography. The his-tag was inserted at the C-terminus since ACBP is a small molecular size (10 kDa) protein whose structure and activity are sensitive to amino acid substitutions in the N-terminus. The his-tag had no or little effect on ACBP structure or ligand binding affinity and specificity. His-ACBP bound the naturally occurring fluorescent cis-parinaroyl-CoA with very high affinity (K(d)=2.15 nM), but exhibited no affinity for non-esterified cis-parinaric acid. To determine if the presence of the C-terminal his-tag altered ACBP interactions with other proteins, direct binding to hepatocyte nuclear factor-4alpha (HNF-4alpha), a nuclear receptor regulating transcription of genes involved in lipid metabolism, was examined. His-ACBP and HNF-4alpha were labeled with Cy5 and Cy3, respectively, and direct interaction was determined by a novel fluorescence resonance energy transfer (FRET) binding assay. FRET analysis showed that his-ACBP directly interacted with HNF-4alpha (intermolecular distance of 73 A) at high affinity (K(d)=64-111 nM) similar to native ACBP. The his-tag also had no effect on ACBPs ability to interact with and stimulate microsomal enzymes utilizing or forming fatty acyl CoA. Thus, C-terminal his-tagged-ACBP maintained very similar structural and functional features of the untagged native protein and can be used in further in vitro experiments that require pure recombinant ACBP.


Assuntos
Inibidor da Ligação a Diazepam/química , Inibidor da Ligação a Diazepam/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Histidina/química , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Carbocianinas/química , Dicroísmo Circular , Clonagem Molecular , Coenzima A Ligases/metabolismo , Inibidor da Ligação a Diazepam/isolamento & purificação , Escherichia coli/metabolismo , Ácidos Graxos Insaturados/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fator 4 Nuclear de Hepatócito/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
20.
Lipids ; 43(1): 1-17, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17882463

RESUMO

Abnormal energy regulation may significantly contribute to the pathogenesis of obesity, diabetes mellitus, cardiovascular disease, and cancer. For rapid control of energy homeostasis, allosteric and posttranslational events activate or alter activity of key metabolic enzymes. For longer impact, transcriptional regulation is more effective, especially in response to nutrients such as long chain fatty acids (LCFA). Recent advances provide insights into how poorly water-soluble lipid nutrients [LCFA; retinoic acid (RA)] and their metabolites (long chain fatty acyl Coenzyme A, LCFA-CoA) reach nuclei, bind their cognate ligand-activated receptors, and regulate transcription for signaling lipid and glucose catabolism or storage: (i) while serum and cytoplasmic LCFA levels are in the 200 mircroM-mM range, real-time imaging recently revealed that LCFA and LCFA-CoA are also located within nuclei (nM range); (ii) sensitive fluorescence binding assays show that LCFA-activated nuclear receptors [peroxisome proliferator-activated receptor-alpha (PPARalpha) and hepatocyte nuclear factor 4alpha (HNF4alpha)] exhibit high affinity (low nM KdS) for LCFA (PPARalpha) and/or LCFA-CoA (PPARalpha, HNF4alpha)-in the same range as nuclear levels of these ligands; (iii) live and fixed cell immunolabeling and imaging revealed that some cytoplasmic lipid binding proteins [liver fatty acid binding protein (L-FABP), acyl CoA binding protein (ACBP), cellular retinoic acid binding protein-2 (CRABP-2)] enter nuclei, bind nuclear receptors (PPARalpha, HNF4alpha, CRABP-2), and activate transcription of genes in fatty acid and glucose metabolism; and (iv) studies with gene ablated mice provided physiological relevance of LCFA and LCFA-CoA binding proteins in nuclear signaling. This led to the hypothesis that cytoplasmic lipid binding proteins transfer and channel lipidic ligands into nuclei for initiating nuclear receptor transcriptional activity to provide new lipid nutrient signaling pathways that affect lipid and glucose catabolism and storage.


Assuntos
Proteínas de Ligação a Ácido Graxo/fisiologia , Ácidos Graxos/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica/fisiologia , Animais , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos/farmacologia , Humanos , Ligantes , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA