Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 122: 791-798, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26594127

RESUMO

Indiana Harbor and Ship Canal (IHSC) in East Chicago is an industrial waterway on Lake Michigan and a source of PCBs to Lake Michigan and the overlying air. We hypothesized that IHSC is an important source of airborne PCBs to surrounding communities. We used AERMOD to model hourly PCB concentrations, utilizing emission fluxes from a prior study and hourly meteorology provided by the State of Indiana. We also assessed dispersion using hourly observed meteorology from a local airport and high resolution profiles simulated by the Weather Research and Forecasting model. We found that emissions from IHSC waters contributed about 15% of the observed ΣPCB concentrations close to IHSC when compared on an hourly basis and about 10% of observed annual concentrations at a nearby school. Concentrations at the school due to emissions from IHSC ranged from 0 to 18,000 pg m-3, up to 20 times higher than observed background levels, with an annual geometric mean (GSD) of 19 (31) pg m-3. Our findings indicate that IHSC is an important source of PCBs to East Chicago, but not the only source. Four observed enriched PCB3 samples suggest a nearby non-Aroclor source.

2.
Environ Sci Technol ; 47(15): 8591-8, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23837599

RESUMO

Passive air samplers (PAS) including polyurethane foam (PUF) are widely deployed as an inexpensive and practical way to sample semivolatile pollutants. However, concentration estimates from PAS rely on constant empirical mass transfer rates, which add unquantified uncertainties to concentrations. Here we present a method for modeling hourly sampling rates for semivolatile compounds from hourly meteorology using first-principle chemistry, physics, and fluid dynamics, calibrated from depuration experiments. This approach quantifies and explains observed effects of meteorology on variability in compound-specific sampling rates and analyte concentrations, simulates nonlinear PUF uptake, and recovers synthetic hourly concentrations at a reference temperature. Sampling rates are evaluated for polychlorinated biphenyl congeners at a network of Harner model samplers in Chicago, IL, during 2008, finding simulated average sampling rates within analytical uncertainty of those determined from loss of depuration compounds and confirming quasilinear uptake. Results indicate hourly, daily, and interannual variability in sampling rates, sensitivity to temporal resolution in meteorology, and predictable volatility-based relationships between congeners. We quantify the importance of each simulated process to sampling rates and mass transfer and assess uncertainty contributed by advection, molecular diffusion, volatilization, and flow regime within the PAS, finding that PAS chamber temperature contributes the greatest variability to total process uncertainty (7.3%).


Assuntos
Poluentes Atmosféricos/análise , Poliuretanos/química , Modelos Teóricos , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA