Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(45): E9455-E9464, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078394

RESUMO

Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl-KCl eutectics and of atomic layers of WSe2 from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives.


Assuntos
Nanoestruturas/química , Alicerces Teciduais/química , Animais , Gânglios Espinais/citologia , Masculino , Rede Nervosa/citologia , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Temperatura , Engenharia Tecidual/métodos
2.
J Am Chem Soc ; 140(24): 7504-7509, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29860840

RESUMO

We demonstrate that solid-liquid nanocomposites derived from porous organic cages are effective lithium ion electrolytes at room temperature. A solid-liquid electrolyte nanocomposite (SLEN) fabricated from a LiTFSI/DME electrolyte system and a porous organic cage exhibits ionic conductivity on the order of 1 × 10-3 S cm-1. With an experimentally measured activation barrier of 0.16 eV, this composite is characterized as a superionic conductor. Furthermore, the SLEN displays excellent oxidative stability up to 4.7 V vs Li/Li+. This simple three-component system enables the rational design of electrolytes from tunable discrete molecular architectures.

3.
J Org Chem ; 77(4): 1623-31, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22112009

RESUMO

The fundamental properties of the parent and substituted 2-pyridones (2-pyridone, 3-chloro-2-pyridone, and 3-formyl-2-pyridone) have been examined in the gas phase using computational and experimental mass spectrometry methods. Newly measured acidities and proton affinities are reported and used to ascertain tautomer preference. These particular substrates (as well as additional 3-substituted pyridones) were chosen in order to examine the correlation between leaving group ability and acidity for moieties that allow resonance delocalization versus those that do not, which is discussed herein.


Assuntos
Piridonas/química , Uracila/química , Ácidos , Gases , Ácido Clorídrico/química , Cinética , Espectrometria de Massas , Modelos Químicos , Prótons , Estereoisomerismo , Termodinâmica
4.
Nat Chem ; 7(12): 987-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26587714

RESUMO

C-H bond oxidation reactions underscore the existing paradigm wherein high reactivity and high selectivity are inversely correlated. The development of catalysts capable of oxidizing strong aliphatic C(sp(3))-H bonds while displaying chemoselectivity (that is, tolerance of more oxidizable functionality) remains an unsolved problem. Here, we describe a catalyst, manganese tert-butylphthalocyanine [Mn((t)BuPc)], that is an outlier to the reactivity-selectivity paradigm. It is unique in its capacity to functionalize all types of C(sp(3))-H bond intramolecularly, while displaying excellent chemoselectivity in the presence of π functionality. Mechanistic studies indicate that [Mn((t)BuPc)] transfers bound nitrenes to C(sp(3))-H bonds via a pathway that lies between concerted C-H insertion, observed with reactive noble metals such as rhodium, and stepwise radical C-H abstraction/rebound, as observed with chemoselective base metals such as iron. Rather than achieving a blending of effects, [Mn((t)BuPc)] aminates even 1° aliphatic and propargylic C-H bonds, demonstrating reactivity and selectivity unusual for previously known catalysts.


Assuntos
Aminação , Carbono/química , Hidrogênio/química , Manganês/química , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA