Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 16(4): 333-340, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858598

RESUMO

Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems. Here we took advantage of the high sensitivity and broad chemical shift range of 19F nuclei and leveraged the remarkable relaxation properties of the aromatic 19F-13C spin pair to disperse 19F resonances in a two-dimensional transverse relaxation-optimized spectroscopy spectrum. We demonstrate the application of 19F-13C transverse relaxation-optimized spectroscopy to investigate proteins and nucleic acids. This experiment expands the scope of 19F NMR in the study of the structure, dynamics, and function of large and complex biological systems and provides a powerful background-free NMR probe.


Assuntos
Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular/instrumentação , Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Proteínas/química , DNA/química , Escherichia coli/metabolismo , Flúor/química , Fluoruracila/química , Campos Magnéticos , Peso Molecular , Mutagênese Sítio-Dirigida , Complexo de Endopeptidases do Proteassoma/química , Thermoplasma/metabolismo
2.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34959731

RESUMO

Here, we describe the synthesis, characterization, and biological activities of a series of 26 new styryl-2(3H)-benzothiazolone analogs of combretastatin-A4 (CA-4). The cytotoxic activities of these compounds were tested in several cell lines (EA.hy926, A549, BEAS-2B, MDA-MB-231, HT-29, MCF-7, and MCF-10A), and the relations between structure and cytotoxicity are discussed. From the series, compound (Z)-3-methyl-6-(3,4,5-trimethoxystyryl)-2(3H)-benzothiazolone (26Z) exhibits the most potent cytotoxic activity (IC50 0.13 ± 0.01 µM) against EA.hy926 cells. 26Z not only inhibits vasculogenesis but also disrupts pre-existing vasculature. 26Z is a microtubule-modulating agent and inhibits a spectrum of angiogenic events in EA.hy926 cells by interfering with endothelial cell invasion, migration, and proliferation. 26Z also shows anti-proliferative activity in CA-4 resistant cells with the following IC50 values: HT-29 (0.008 ± 0.001 µM), MDA-MB-231 (1.35 ± 0.42 µM), and MCF-7 (2.42 ± 0.48 µM). Cell-cycle phase-specific experiments show that 26Z treatment results in G2/M arrest and mitotic spindle multipolarity, suggesting that drug-induced centrosome amplification could promote cell death. Some 26Z-treated adherent cells undergo aberrant cytokinesis, resulting in aneuploidy that perhaps contributes to drug-induced cell death. These data indicate that spindle multipolarity induction by 26Z has an exciting chemotherapeutic potential that merits further investigation.

3.
Eur J Med Chem ; 219: 113435, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892272

RESUMO

The eukaryotic translation initiation factor 4E (eIF4E) is the master regulator of cap-dependent protein synthesis. Overexpression of eIF4E is implicated in diseases such as cancer, where dysregulation of oncogenic protein translation is frequently observed. eIF4E has been an attractive target for cancer treatment. Here we report a high-resolution X-ray crystal structure of eIF4E in complex with a novel inhibitor (i4EG-BiP) that targets an internal binding site, in contrast to the previously described inhibitor, 4EGI-1, which binds to the surface. We demonstrate that i4EG-BiP is able to displace the scaffold protein eIF4G and inhibit the proliferation of cancer cells. We provide insights into how i4EG-BiP is able to inhibit cap-dependent translation by increasing the eIF4E-4E-BP1 interaction while diminishing the interaction of eIF4E with eIF4G. Leveraging structural details, we designed proteolysis targeted chimeras (PROTACs) derived from 4EGI-1 and i4EG-BiP and characterized these on biochemical and cellular levels. We were able to design PROTACs capable of binding eIF4E and successfully engaging Cereblon, which targets proteins for proteolysis. However, these initial PROTACs did not successfully stimulate degradation of eIF4E, possibly due to competitive effects from 4E-BP1 binding. Our results highlight challenges of targeted proteasomal degradation of eIF4E that must be addressed by future efforts.


Assuntos
Compostos de Bifenilo/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Sítios de Ligação , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Cinética , Simulação de Acoplamento Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteômica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
4.
Eur J Med Chem ; 120: 121-33, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27187864

RESUMO

In order to design and synthesize a new class of heterocyclic analogues of natural combretastatin A-4 and its synthetic derivative AVE8062, the benzoxazolone ring was selected as a scaffold for a bioisosteric replacement of the ring B of both molecules. A library of 28 cis- and trans-styrylbenzoxazolones was obtained by a modified Wittig reaction under Boden's conditions. Structures of the newly synthesized compounds bearing the 3,4,5-trimethoxy-, 3,4-dimethoxy-, 3,5-dimethoxy-, and 4-methoxystyryl fragment at position 4, 5, 6 or 7 of benzoxazolone core were determined on the basis of spectral and X ray data. The in vitro cytotoxicity of styrylbenzoxazolones against different cell lines was examined. Stilbene derivative 16Z, (Z)-3-methyl-6-(3,4,5-trimethoxystyryl)-2(3H)-benzoxazolone, showed highest antiproliferative potential of the series, with IC50 of 0.25 µM against combretastatin resistant cell line HT-29, 0.19 µM against HepG2, 0.28 µM against EA.hy926 and 0.73 µM against K562 cells. Furthermore, the results of flow cytometric analysis confirmed that 16Z induced cell cycle arrest in G2/M phase in the cell lines like combretastatin A-4. This arrest is followed by an abnormal exit of cells from mitosis without cytokinesis into a pseudo G1-like multinucleate state leading to late apoptosis and cell death. Accordingly, synthetic analogue 16Z was identified as the most promising potential anticancer agent in present study, and was selected as lead compound for further detailed investigations.


Assuntos
Antineoplásicos/química , Benzoxazóis/química , Bibenzilas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Antineoplásicos/farmacologia , Bibenzilas/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA