Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(34): 18770-18773, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32421133

RESUMO

Pyrochlore iridates (Na,Ca)2-xIr2O6·H2O are acid-stable electrocatalysts that are candidates for use in electrolysers and fuel cells. Ir LIII-edge X-ray absorption fine structure spectroscopy in 1 M H2SO4 at oxygen evolution conditions suggests the involvement of the electrons from the conduction band of the metallic particles, rather than just surface iridium reacting.

2.
Phys Chem Chem Phys ; 22(32): 17814-17823, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32582898

RESUMO

This study presents the application of X-ray diffraction computed tomography for the first time to analyze the crystal dimensions of LiNi0.33Mn0.33Co0.33O2 electrodes cycled to 4.2 and 4.7 V in full cells with graphite as negative electrodes at 1 µm spatial resolution to determine the change in unit cell dimensions as a result of electrochemical cycling. The nature of the technique permits the spatial localization of the diffraction information in 3D and mapping of heterogeneities from the electrode to the particle level. An overall decrease of 0.4% and 0.6% was observed for the unit cell volume after 100 cycles for the electrodes cycled to 4.2 and 4.7 V. Additionally, focused ion beam-scanning electron microscope cross-sections indicate extensive particle cracking as a function of upper cut-off voltage, further confirming that severe cycling stresses exacerbate degradation. Finally, the technique facilitates the detection of parts of the electrode that have inhomogeneous lattice parameters that deviate from the bulk of the sample, further highlighting the effectiveness of the technique as a diagnostic tool, bridging the gap between crystal structure and electrochemical performance.

3.
Angew Chem Int Ed Engl ; 53(41): 10960-4, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25196322

RESUMO

The pyrochlore solid solution (Na(0.33)Ce(0.67))2(Ir(1-x)Ru(x))2O7 (0≤x≤1), containing B-site Ru(IV) and Ir(IV) is prepared by hydrothermal synthesis and used as a catalyst layer for electrochemical oxygen evolution from water at pH<7. The materials have atomically mixed Ru and Ir and their nanocrystalline form allows effective fabrication of electrode coatings with improved charge densities over a typical (Ru,Ir)O2 catalyst. An in situ study of the catalyst layers using XANES spectroscopy at the Ir L(III) and Ru K edges shows that both Ru and Ir participate in redox chemistry at oxygen evolution conditions and that Ru is more active than Ir, being oxidized by almost one oxidation state at maximum applied potential, with no evidence for ruthenate or iridate in +6 or higher oxidation states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA