Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Cycle ; 3(2): 212-7, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14712091

RESUMO

Studies in several model systems, including Xenopus laevis oocytes and embryos, have indicated that the checkpoint kinase, Chk1, is required for early development, even in the absence of damaged or unreplicated DNA. Chk1 is transiently activated at the midblastula transition (MBT) in Xenopus, a time when the cell cycle remodels from rapid embryonic cleavage cycles to longer, more regulated somatic cell cycles. To better understand the role of Chk1 in cell cycle remodeling, mRNA encoding Chk1 was microinjected into 1-cell stage embryos, and the effects on both the MBT and on the expression of several cell cycle regulators were examined. Zygotic transcription, a hallmark of the MBT that depends upon the nucleocytoplasmic (N/C) ratio, was blocked, as was degradation of maternal cyclin E, an event of the MBT that occurs independent of the N/C ratio. Levels of mitotic cyclins were elevated throughout early development, consistent with cell cycle arrest at G2/M. In these embryos, Cdc25A level was low, whereas Cdc25C level was not affected. Furthermore, the level of Wee1 increased at 6 hrs post-fertilization (pf), the time at which the MBT normally occurs, even though these embryos did not demonstrate any known markers of the MBT. These studies suggest that in addition to targeting Cdc25A for degradation, Chk1 may also function in cell cycle remodeling at the MBT by stabilizing Wee1 until it is replaced by the somatic Wee2 protein during gastrulation.


Assuntos
Blástula/metabolismo , Ciclo Celular/fisiologia , Proteínas Nucleares , Proteínas Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Fosfatases cdc25/metabolismo , Animais , Blástula/citologia , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Ciclina E/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Fertilização in vitro , Gástrula/citologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Microinjeções , Oócitos/citologia , Proteínas Tirosina Quinases/metabolismo , Xenopus laevis/embriologia
2.
Biophys Chem ; 104(3): 573-89, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12914904

RESUMO

Early cell cycles of Xenopus laevis embryos are characterized by rapid oscillations in the activity of two cyclin-dependent kinases. Cdk1 activity peaks at mitosis, driven by periodic degradation of cyclins A and B. In contrast, Cdk2 activity oscillates twice per cell cycle, despite a constant level of its partner, cyclin E. Cyclin E degrades at a fixed time after fertilization, normally corresponding to the midblastula transition. Based on published data and new experiments, we constructed a mathematical model in which: (1) oscillations in Cdk2 activity depend upon changes in phosphorylation, (2) Cdk2 participates in a negative feedback loop with the inhibitory kinase Wee1; (3) cyclin E is cooperatively removed from the oscillatory system; and (4) removed cyclin E is degraded by a pathway activated by cyclin E/Cdk2 itself. The model's predictions about embryos injected with Xic1, a stoichiometric inhibitor of cyclin E/Cdk2, were experimentally validated.


Assuntos
Quinases relacionadas a CDC2 e CDC28/metabolismo , Ciclina E/metabolismo , Modelos Biológicos , Proteínas Nucleares , Xenopus laevis/embriologia , Algoritmos , Amanitinas/farmacologia , Animais , Relógios Biológicos/fisiologia , Blástula/fisiologia , Western Blotting , Quinases relacionadas a CDC2 e CDC28/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Proteínas de Ciclo Celular/fisiologia , Quinase 1 do Ponto de Checagem , Biologia Computacional , Ciclina E/genética , Quinase 2 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p27 , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Retroalimentação Fisiológica/fisiologia , Cinética , Modelos Teóricos , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/farmacologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas de Xenopus , Xenopus laevis/genética , Fosfatases cdc25/metabolismo
3.
Cell Rep ; 2(3): 511-7, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22921401

RESUMO

Heightened nociceptor function caused by inflammatory mediators such as bradykinin (BK) contributes to increased pain sensitivity (hyperalgesia) to noxious mechanical and thermal stimuli. Although it is known that sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, the cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically activated (MA) channel piezo2 (known as FAM38B) present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by BK, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation is slowed by bradykinin receptor beta 2 (BDKRB2) activation in heterologous expression systems. Protein kinase A (PKA) and protein kinase C (PKC) agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by BK via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia.


Assuntos
Bradicinina/metabolismo , Citocinas/metabolismo , Hiperalgesia/metabolismo , Mecanorreceptores/metabolismo , Potenciais da Membrana , Proteínas de Neoplasias/metabolismo , Animais , Bradicinina/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/genética , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Hiperalgesia/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mecanorreceptores/patologia , Proteínas de Neoplasias/genética , Nociceptores/metabolismo , Nociceptores/patologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA