Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Annu Rev Cell Dev Biol ; 38: 1-23, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759800

RESUMO

The microtubule (MT) cytoskeleton provides the architecture that governs intracellular organization and the regulated motion of macromolecules through the crowded cytoplasm. The key to establishing a functioning cytoskeletal architecture is regulating when and where new MTs are nucleated. Within the spindle, the vast majority of MTs are generated through a pathway known as branching MT nucleation, which exponentially amplifies MT number in a polar manner. Whereas other MT nucleation pathways generally require a complex organelle such as the centrosome or Golgi apparatus to localize nucleation factors, the branching site is based solely on a simple, preformed MT, making it an ideal system to study MT nucleation. In this review, we address recent developments in characterizing branching factors, the branching reaction, and its regulation, as well as branching MT nucleation in systems beyond the spindle and within human disease.


Assuntos
Centro Organizador dos Microtúbulos , Fuso Acromático , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
2.
Nat Rev Mol Cell Biol ; 24(8): 523-542, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977834

RESUMO

The microtubule-based spindle orchestrates chromosome segregation during cell division. Following more than a century of study, many components and pathways contributing to spindle assembly have been described, but how the spindle robustly assembles remains incompletely understood. This process involves the self-organization of a large number of molecular parts - up to hundreds of thousands in vertebrate cells - whose local interactions give rise to a cellular-scale structure with emergent architecture, mechanics and function. In this Review, we discuss key concepts in our understanding of spindle assembly, focusing on recent advances and the new approaches that enabled them. We describe the pathways that generate the microtubule framework of the spindle by driving microtubule nucleation in a spatially controlled fashion and present recent insights regarding the organization of individual microtubules into structural modules. Finally, we discuss the emergent properties of the spindle that enable robust chromosome segregation.


Assuntos
Microtúbulos , Fuso Acromático , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Divisão Celular , Segregação de Cromossomos
3.
Annu Rev Biochem ; 85: 659-83, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27145846

RESUMO

Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ∼200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes.


Assuntos
Centrossomo/metabolismo , Cinetocoros/metabolismo , Metáfase , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Centrossomo/ultraestrutura , Segregação de Cromossomos , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Cinetocoros/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Transdução de Sinais , Fuso Acromático/ultraestrutura , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Zigoto/citologia , Zigoto/metabolismo
4.
Cell ; 152(4): 768-77, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415226

RESUMO

The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence has suggested that microtubules also might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires γ-tubulin and augmin and is stimulated by factors previously implicated in chromatin-stimulated nucleation, guanosine triphosphate(GTP)-bound Ran and its effector, TPX2. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Meiose , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Microscopia/métodos , Óvulo/química , Óvulo/metabolismo
5.
Nature ; 609(7926): 255-264, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071192

RESUMO

Liquid-liquid phase separation and related phase transitions have emerged as generic mechanisms in living cells for the formation of membraneless compartments or biomolecular condensates. The surface between two immiscible phases has an interfacial tension, generating capillary forces that can perform work on the surrounding environment. Here we present the physical principles of capillarity, including examples of how capillary forces structure multiphase condensates and remodel biological substrates. As with other mechanisms of intracellular force generation, for example, molecular motors, capillary forces can influence biological processes. Identifying the biomolecular determinants of condensate capillarity represents an exciting frontier, bridging soft matter physics and cell biology.


Assuntos
Condensados Biomoleculares , Condensados Biomoleculares/química , Biologia Celular , Transição de Fase
6.
Trends Biochem Sci ; 48(9): 761-775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482516

RESUMO

The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Centro Organizador dos Microtúbulos/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(4): e2315992121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232292

RESUMO

Controllable platforms to engineer robust cytoskeletal scaffolds have the potential to create novel on-chip nanotechnologies. Inspired by axons, we combined the branching microtubule (MT) nucleation pathway with microfabrication to develop "cytoskeletal circuits." This active matter platform allows control over the adaptive self-organization of uniformly polarized MT arrays via geometric features of microstructures designed within a microfluidic confinement. We build and characterize basic elements, including turns and divisions, as well as complex regulatory elements, such as biased division and MT diodes, to construct various MT architectures on a chip. Our platform could be used in diverse applications, ranging from efficient on-chip molecular transport to mechanical nano-actuators. Further, cytoskeletal circuits can serve as a tool to study how the physical environment contributes to MT architecture in living cells.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Axônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
8.
J Biol Chem ; 299(6): 104736, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086784

RESUMO

Mitotic spindles are composed of microtubules (MTs) that must nucleate at the right place and time. Ran regulates this process by directly controlling the release of spindle assembly factors (SAFs) from nucleocytoplasmic shuttle proteins importin-αß and subsequently forms a biochemical gradient of SAFs localized around chromosomes. The majority of spindle MTs are generated by branching MT nucleation, which has been shown to require an eight-subunit protein complex known as augmin. In Xenopus laevis, Ran can control branching through a canonical SAF, TPX2, which is nonessential in Drosophila melanogaster embryos and HeLa cells. Thus, how Ran regulates branching MT nucleation when TPX2 is not required remains unknown. Here, we use in vitro pulldowns and total internal reflection fluorescence microscopy to show that augmin is a Ran-regulated SAF. We demonstrate that augmin directly interacts with both importin-α and importin-ß through two nuclear localization sequences on the Haus8 subunit, which overlap with the MT-binding site. Moreover, we show that Ran controls localization of augmin to MTs in both Xenopus egg extract and in vitro. Our results demonstrate that RanGTP directly regulates augmin, which establishes a new way by which Ran controls branching MT nucleation and spindle assembly both in the absence and presence of TPX2.


Assuntos
Proteínas Associadas aos Microtúbulos , Complexos Multiproteicos , Proteínas de Xenopus , Proteína ran de Ligação ao GTP , Animais , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila melanogaster , Células HeLa , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Fuso Acromático/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , alfa Carioferinas , beta Carioferinas
9.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34297125

RESUMO

As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αß-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Estrutura Secundária de Proteína , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
10.
J Biol Chem ; 297(3): 100998, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302807

RESUMO

The microtubule-based mitotic spindle is responsible for equally partitioning the genome during each cell division, and its assembly is executed via several microtubule nucleation pathways. Targeting Protein for XKlp2 (TPX2) stimulates the branching microtubule nucleation pathway, where new microtubules are nucleated from preexisting ones within mitotic or meiotic spindles. TPX2, like other spindle assembly factors, is sequestered by binding to nuclear importins-α/ß until the onset of mitosis, yet the molecular nature of this regulation remains unclear. Here we demonstrate that TPX2 interacts with importins-α/ß with nanomolar affinity in a 1:1:1 monodispersed trimer. We also identify a new nuclear localization sequence in TPX2 that contributes to its high-affinity interaction with importin-α. In addition, we establish that TPX2 interacts with importin-ß via dispersed, weak interactions. We show that interactions of both importin-α and -ß with TPX2 inhibit its ability to undergo phase separation, which was recently shown to enhance the kinetics of branching microtubule nucleation. In summary, our study informs how importins regulate TPX2 to facilitate spindle assembly, and provides novel insight into the functional regulation of protein phase separation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Cromatografia em Gel/métodos , Humanos , Microtúbulos/metabolismo , Sinais de Localização Nuclear , Proteínas Nucleares/metabolismo , Ligação Proteica
11.
Soft Matter ; 17(24): 5921-5931, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34041514

RESUMO

The organization of microtubules (MTs) is critical for cells during interphase and mitosis. During mitotic spindle assembly, MTs are made and organized around chromosomes in a process regulated by RanGTP. The role of RanGTP has been explored in Xenopus egg extracts, which are not limited by a cell membrane. Here, we investigated whether cell-sized confinements affect the assembly of RanGTP-induced MT networks in Xenopus egg extracts. We used microfluidics to encapsulate extracts within monodisperse extract-in-oil droplets. Importantly, we find that the architecture of Ran-induced MT networks depends on the droplet diameter and the Ran concentration, and differs from structures formed in bulk extracts. Our results highlight that both MT nucleation and physical confinement play critical roles in determining the spatial organization of the MT cytoskeleton.


Assuntos
Fuso Acromático , Proteínas de Xenopus , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
12.
Biochemistry ; 57(1): 30-37, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29256606

RESUMO

Centrosomes are self-assembling, micron-scale, nonmembrane bound organelles that nucleate microtubules (MTs) and organize the microtubule cytoskeleton of the cell. They orchestrate critical cellular processes such as ciliary-based motility, vesicle trafficking, and cell division. Much is known about the role of the centrosome in these contexts, but we have a less comprehensive understanding of how the centrosome assembles and generates microtubules. Studies over the past 10 years have fundamentally shifted our view of these processes. Subdiffraction imaging has probed the amorphous haze of material surrounding the core of the centrosome revealing a complex, hierarchically organized structure whose composition and size changes profoundly during the transition from interphase to mitosis. New biophysical insights into protein phase transitions, where a diffuse protein spontaneously separates into a locally concentrated, nonmembrane bounded compartment, have provided a fresh perspective into how the centrosome might rapidly condense from diffuse cytoplasmic components. In this Perspective, we focus on recent findings that identify several centrosomal proteins that undergo phase transitions. We discuss how to reconcile these results with the current model of the underlying organization of proteins in the centrosome. Furthermore, we reflect on how these findings impact our understanding of how the centrosome undergoes self-assembly and promotes MT nucleation.


Assuntos
Bioquímica/métodos , Centrossomo/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Animais , Bioquímica/tendências , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Centrossomo/química , Humanos , Interfase , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/química , Microtúbulos/química , Mitose , Transição de Fase , Multimerização Proteica , Transporte Proteico
13.
J Biol Chem ; 290(28): 17154-62, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25957410

RESUMO

The microtubule (MT) cytoskeleton gives cells their shape, organizes the cellular interior, and segregates chromosomes. These functions rely on the precise arrangement of MTs, which is achieved by the coordinated action of MT-associated proteins (MAPs). We highlight the first and most important examples of how different MAP activities are combined in vitro to create an ensemble function that exceeds the simple addition of their individual activities, and how the Xenopus laevis egg extract system has been utilized as a powerful intermediate between cellular and purified systems to uncover the design principles of self-organized MT networks in the cell.


Assuntos
Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Animais , Citoesqueleto/química , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Fuso Acromático/química , Fuso Acromático/metabolismo , Xenopus laevis
14.
Proc Natl Acad Sci U S A ; 108(35): 14473-8, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21844347

RESUMO

Female meiotic spindles in many organisms form in the absence of centrosomes, the organelle typically associated with microtubule (MT) nucleation. Previous studies have proposed that these meiotic spindles arise from RanGTP-mediated MT nucleation in the vicinity of chromatin; however, whether this process is sufficient for spindle formation is unknown. Here, we investigated whether a recently proposed spindle-based MT nucleation pathway that involves augmin, an 8-subunit protein complex, also contributes to spindle morphogenesis. We used an assay system in which hundreds of meiotic spindles can be observed forming around chromatin-coated beads after introduction of Xenopus egg extracts. Spindles forming in augmin-depleted extracts showed reduced rates of MT formation and were predominantly multipolar, revealing a function of augmin in stabilizing the bipolar shape of the acentrosomal meiotic spindle. Our studies also have uncovered an apparent augmin-independent MT nucleation process from acentrosomal poles, which becomes increasingly active over time and appears to partially rescue the spindle defects that arise from augmin depletion. Our studies reveal that spatially and temporally distinct MT generation pathways from chromatin, spindle MTs, and acentrosomal poles all contribute to robust bipolar spindle formation in meiotic extracts.


Assuntos
Centrossomo/metabolismo , Meiose/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Complexos Multiproteicos/fisiologia , Fuso Acromático/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Feminino , Microtúbulos/metabolismo , Óvulo/metabolismo , Subunidades Proteicas , Xenopus laevis
15.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895418

RESUMO

It has become increasingly evident in recent years that nucleation of microtubules from a diverse set of MTOCs requires both the γ-tubulin ring complex (γ-TuRC) and the microtubule polymerase XMAP215. Despite their essentiality, little is known about how these nucleation factors interact and work together to generate microtubules. Using biochemical domain analysis of XMAP215 and structural approaches, we find that a sixth TOG domain in XMAP215 binds γ-TuRC via γ-tubulin as part of a broader interaction involving the C-terminal region. Moreover, TOG6 is required for XMAP215 to promote nucleation from γ-TuRC to its full extent. Interestingly, we find that XMAP215 also depends strongly on TOG5 for microtubule lattice binding and nucleation. Accordingly, we report a cryo-EM structure of TOG5 bound to the microtubule lattice that reveals promotion of lateral interactions between tubulin dimers. Finally, we find that while XMAP215 constructs' effects on nucleation are generally proportional to their effects on polymerization, formation of a direct complex with γ-TuRC allows cooperative nucleation activity. Thus, we propose that XMAP215's C-terminal TOGs 5 and 6 play key roles in promoting nucleation by promoting formation of longitudinal and lateral bonds in γ-TuRC templated nascent microtubules at cellular MTOCs.

16.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187686

RESUMO

In large vertebrate spindles, the majority of microtubules are formed via branching microtubule nucleation, whereby microtubules nucleate along the side of pre-existing microtubules. Hepatoma up-regulated protein (HURP) is a microtubule-associated protein that has been implicated in spindle assembly, but its mode of action is yet to be defined. In this study, we show that HURP is necessary for RanGTP-induced branching microtubule nucleation in Xenopus egg extract. Specifically, HURP stabilizes the microtubule lattice to promote microtubule formation from γ-TuRC. This function is shifted to promote branching microtubule nucleation in the presence of TPX2, another branching-promoting factor, as HURP's localization to microtubules is enhanced by TPX2 condensation. Lastly, we provide a structure of HURP on the microtubule lattice, revealing how HURP binding stabilizes the microtubule lattice. We propose a model in which HURP stabilizes microtubules during their formation, and TPX2 preferentially enriches HURP to microtubules to promote branching microtubule nucleation and thus spindle assembly.

17.
Nat Commun ; 14(1): 3682, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344496

RESUMO

Targeting protein for Xklp2 (TPX2) is a key factor that stimulates branching microtubule nucleation during cell division. Upon binding to microtubules (MTs), TPX2 forms condensates via liquid-liquid phase separation, which facilitates recruitment of microtubule nucleation factors and tubulin. We report the structure of the TPX2 C-terminal minimal active domain (TPX2α5-α7) on the microtubule lattice determined by magic-angle-spinning NMR. We demonstrate that TPX2α5-α7 forms a co-condensate with soluble tubulin on microtubules and binds to MTs between two adjacent protofilaments and at the intersection of four tubulin heterodimers. These interactions stabilize the microtubules and promote the recruitment of tubulin. Our results reveal that TPX2α5-α7 is disordered in solution and adopts a folded structure on MTs, indicating that TPX2α5-α7 undergoes structural changes from unfolded to folded states upon binding to microtubules. The aromatic residues form dense interactions in the core, which stabilize folding of TPX2α5-α7 on microtubules. This work informs on how the phase-separated TPX2α5-α7 behaves on microtubules and represents an atomic-level structural characterization of a protein that is involved in a condensate on cytoskeletal filaments.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo
18.
Nat Commun ; 14(1): 2072, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055408

RESUMO

Accurate segregation of chromosomes is required to maintain genome integrity during cell division. This feat is accomplished by the microtubule-based spindle. To build a spindle rapidly and with high fidelity, cells take advantage of branching microtubule nucleation, which rapidly amplifies microtubules during cell division. Branching microtubule nucleation relies on the hetero-octameric augmin complex, but lack of structure information about augmin has hindered understanding how it promotes branching. In this work, we combine cryo-electron microscopy, protein structural prediction, and visualization of fused bulky tags via negative stain electron microscopy to identify the location and orientation of each subunit within the augmin structure. Evolutionary analysis shows that augmin's structure is highly conserved across eukaryotes, and that augmin contains a previously unidentified microtubule binding site. Thus, our findings provide insight into the mechanism of branching microtubule nucleation.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Microscopia Crioeletrônica , Microtúbulos/metabolismo , Vertebrados/metabolismo , Sítios de Ligação , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
19.
Nat Commun ; 14(1): 3696, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344488

RESUMO

Microtubules are generated at centrosomes, chromosomes, and within spindles during cell division. Whereas microtubule nucleation at the centrosome is well characterized, much remains unknown about where, when, and how microtubules are nucleated at chromosomes. To address these questions, we reconstitute microtubule nucleation from purified chromosomes in meiotic Xenopus egg extract and find that chromosomes alone can form spindles. We visualize microtubule nucleation near chromosomes using total internal reflection fluorescence microscopy to find that this occurs through branching microtubule nucleation. By inhibiting molecular motors, we find that the organization of the resultant polar branched networks is consistent with a theoretical model where the effectors for branching nucleation are released by chromosomes, forming a concentration gradient that spatially biases branching microtbule nucleation. In the presence of motors, these branched networks are ultimately organized into functional spindles, where the number of emergent spindle poles scales with the number of chromosomes and total chromatin area.


Assuntos
Microtúbulos , Fuso Acromático , Animais , Xenopus laevis , Centrossomo , Cromatina , Cromossomos
20.
ACS Cent Sci ; 9(3): 352-361, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968538

RESUMO

The repeating arrangement of tubulin dimers confers great mechanical strength to microtubules, which are used as scaffolds for intracellular macromolecular transport in cells and exploited in biohybrid devices. The crystalline order in a microtubule, with lattice constants short enough to allow energy transfer between amino acid chromophores, is similar to synthetic structures designed for light harvesting. After photoexcitation, can these amino acid chromophores transfer excitation energy along the microtubule like a natural or artificial light-harvesting system? Here, we use tryptophan autofluorescence lifetimes to probe energy hopping between aromatic residues in tubulin and microtubules. By studying how the quencher concentration alters tryptophan autofluorescence lifetimes, we demonstrate that electronic energy can diffuse over 6.6 nm in microtubules. We discover that while diffusion lengths are influenced by tubulin polymerization state (free tubulin versus tubulin in the microtubule lattice), they are not significantly altered by the average number of protofilaments (13 versus 14). We also demonstrate that the presence of the anesthetics etomidate and isoflurane reduce exciton diffusion. Energy transport as explained by conventional Förster theory (accommodating for interactions between tryptophan and tyrosine residues) does not sufficiently explain our observations. Our studies indicate that microtubules are, unexpectedly, effective light harvesters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA