Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Biotechnol ; 12: 92, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23194296

RESUMO

BACKGROUND: Transferrin (TF) plays a critical physiological role in cellular iron delivery via the transferrin receptor (TFR)-mediated endocytosis pathway in nearly all eukaryotic organisms. Human serum TF (hTF) is extensively used as an iron-delivery vehicle in various mammalian cell cultures for production of therapeutic proteins, and is also being explored for use as a drug carrier to treat a number of diseases by employing its unique TFR-mediated endocytosis pathway. With the increasing concerns over the risk of transmission of infectious pathogenic agents of human plasma-derived TF, recombinant hTF is preferred to use for these applications. Here, we carry out comparative studies of the TFR binding, TFR-mediated endocytosis and cellular iron delivery of recombinant hTF from rice (rhTF), and evaluate its suitability for biopharmaceutical applications. RESULT: Through a TFR competition binding affinity assay with HeLa human cervic carcinoma cells (CCL-2) and Caco-2 human colon carcinoma cells (HTB-37), we show that rhTF competes similarly as hTF to bind TFR, and both the TFR binding capacity and dissociation constant of rhTF are comparable to that of hTF. The endocytosis assay confirms that rhTF behaves similarly as hTF in the slow accumulation in enterocyte-like Caco-2 cells and the rapid recycling pathway in HeLa cells. The pulse-chase assay of rhTF in Caco-2 and HeLa cells further illustrates that rice-derived rhTF possesses the similar endocytosis and intracellular processing compared to hTF. The cell culture assays show that rhTF is functionally similar to hTF in the delivery of iron to two diverse mammalian cell lines, HL-60 human promyelocytic leukemia cells (CCL-240) and murine hybridoma cells derived from a Sp2/0-Ag14 myeloma fusion partner (HB-72), for supporting their proliferation, differentiation, and physiological function of antibody production. CONCLUSION: The functional similarity between rice derived rhTF and native hTF in their cellular iron delivery, TFR binding, and TFR-mediated endocytosis and intracellular processing support that rice-derived rhTF can be used as a safe and animal-free alternative to serum hTF for bioprocessing and biopharmaceutical applications.


Assuntos
Endocitose , Ferro/metabolismo , Oryza/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/química , Animais , Formação de Anticorpos , Células CACO-2 , Proliferação de Células , Células HL-60 , Células HeLa , Humanos , Hibridomas , Cinética , Camundongos , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transferrina/genética , Transferrina/metabolismo
2.
J Virol ; 79(16): 10601-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16051852

RESUMO

Ordered and accurate processing of the human immunodeficiency virus type 1 (HIV-1) GagPol polyprotein precursor by a virally encoded protease is an indispensable step in the appropriate assembly of infectious viral particles. The HIV-1 protease (PR) is a 99-amino-acid enzyme that is translated as part of the GagPol precursor. Previously, we have demonstrated that the initial events in precursor processing are accomplished by the PR domain within GagPol in cis, before it is released from the polyprotein. Despite the critical role that ordered processing of the precursor plays in viral replication, the forces that define the order of cleavage remain poorly understood. Using an in vitro assay in which the full-length HIV-1 GagPol is processed by the embedded PR, we examined the effect of PR context (embedded within GagPol versus the mature 99-amino-acid enzyme) on precursor processing. Our data demonstrate that the PR domain within GagPol is constrained in its ability to cleave some of the processing sites in the precursor. Further, we find that this constraint is dependent upon the presence of a proline as the initial amino acid in the embedded PR; substitution of an alanine at this position produces enhanced cleavage at additional sites when the precursor is processed by the embedded, but not the mature, PR. Overall, our data support a model in which the selection of processing sites and the order of precursor processing are defined, at least in part, by the structure of GagPol itself.


Assuntos
Proteínas de Fusão gag-pol/metabolismo , Protease de HIV/fisiologia , HIV-1/química , Precursores de Proteínas/metabolismo , Sítios de Ligação , Protease de HIV/química , Estrutura Terciária de Proteína , Ritonavir/farmacologia , Relação Estrutura-Atividade
3.
Virology ; 307(2): 204-12, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12667791

RESUMO

As is the case for all retroviruses, the protease of HIV-1 is only functional as a homodimer; dimerization of two protease monomers results in the formation of the enzyme active site. This dimer structure is supported primarily by interactions between the first four amino-terminal and the last four carboxy-terminal amino acids. These eight amino acids form a beta-sheet in which hydrophobic residues are oriented towards the core of the molecule and polar residues are directed towards the solvent. Although the structure of the dimer interface has been determined, the forces that support dimerization have not been fully characterized. Here, we describe a tethered construct in which two protease monomers are joined by a 5 amino acid linker. We evaluate the relative role of each dimer interface residue in functional homo- and heterodimers. Our studies indicate that the hydrophobic residues of the dimer interface are particularly important in maintaining enzyme activity and that enzyme activity is more sensitive to substitutions of the C-terminal amino acids. Further, we demonstrate that the presence of the tether is able to compensate for mutations within the dimer interface that inactivate the enzyme.


Assuntos
Protease de HIV/química , Substituição de Aminoácidos , Dimerização , Protease de HIV/metabolismo , Mutagênese , Relação Estrutura-Atividade
4.
J Virol ; 78(16): 8477-85, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15280456

RESUMO

Processing of the GagPol polyprotein precursor of human immunodeficiency virus type 1 (HIV-1) is a critical step in viral assembly and replication. The HIV-1 protease (PR) is translated as part of GagPol and is both necessary and sufficient for precursor processing. The PR is active only as a dimer; enzyme activation is initiated when the PR domains in two GagPol precursors dimerize. The precise mechanism by which the PR becomes activated and the subsequent initial steps in precursor processing are not well understood. However, it is clear that processing is initiated by the PR domain that is embedded within the precursor itself. We have examined the earliest events in precursor processing using an in vitro assay in which full-length GagPol is cleaved by its embedded PR. We demonstrate that the embedded, immature PR is as much as 10,000-fold less sensitive to inhibition by an active-site PR inhibitor than is the mature, free enzyme. Further, we find that different concentrations of the active-site inhibitor are required to inhibit the processing of different cleavage sites within GagPol. Finally, our results indicate that the first cleavages carried out by the activated PR within GagPol are intramolecular. Overall, our data support a model of virus assembly in which the first cleavages occur in GagPol upstream of the PR. These intramolecular cleavages produce an extended form of PR that completes the final processing steps accompanying the final stages of particle assembly by an intermolecular mechanism.


Assuntos
Proteínas de Fusão gag-pol/metabolismo , Protease de HIV/metabolismo , HIV-1/metabolismo , Precursores de Proteínas/metabolismo , Animais , Ativação Enzimática , Protease de HIV/genética , HIV-1/genética , Humanos , Processamento de Proteína Pós-Traducional , Coelhos , Reticulócitos/metabolismo , Montagem de Vírus
5.
J Virol ; 77(1): 366-74, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12477841

RESUMO

Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.


Assuntos
Proteínas de Fusão gag-pol/metabolismo , Protease de HIV/química , Sequência de Aminoácidos , Sequência de Bases , Dimerização , Ativação Enzimática , Proteínas de Fusão gag-pol/química , Protease de HIV/metabolismo , Dados de Sequência Molecular , Mutação , Precursores de Proteínas/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA