Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 605(7908): 146-151, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314834

RESUMO

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Eicosanoides , Leucócitos Mononucleares , Camundongos , Compostos Orgânicos , Oxazóis , Piperazinas , Poliésteres , Prostaglandinas , Glicoproteína da Espícula de Coronavírus , Sulfonamidas
2.
J Virol ; 98(1): e0151023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168680

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic continues to cause extraordinary loss of life and economic damage. Animal models of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection are needed to better understand disease pathogenesis and evaluate preventive measures and therapies. While mice are widely used to model human disease, mouse angiotensin converting enzyme 2 (ACE2) does not bind the ancestral SARS-CoV-2 spike protein to mediate viral entry. To overcome this limitation, we "humanized" mouse Ace2 using CRISPR gene editing to introduce a single amino acid substitution, H353K, predicted to facilitate S protein binding. While H353K knockin Ace2 (mACE2H353K) mice supported SARS-CoV-2 infection and replication, they exhibited minimal disease manifestations. Following 30 serial passages of ancestral SARS-CoV-2 in mACE2H353K mice, we generated and cloned a more virulent virus. A single isolate (SARS2MA-H353K) was prepared for detailed studies. In 7-11-month-old mACE2H353K mice, a 104 PFU inocula resulted in diffuse alveolar disease manifested as edema, hyaline membrane formation, and interstitial cellular infiltration/thickening. Unexpectedly, the mouse-adapted virus also infected standard BALB/c and C57BL/6 mice and caused severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.IMPORTANCEWe developed a new mouse model with a humanized angiotensin converting enzyme 2 (ACE2) locus that preserves native regulatory elements. A single point mutation in mouse ACE2 (H353K) was sufficient to confer in vivo infection with ancestral severe acute respiratory syndrome-coronavirus-2 virus. Through in vivo serial passage, a virulent mouse-adapted strain was obtained. In aged mACE2H353K mice, the mouse-adapted strain caused diffuse alveolar disease. The mouse-adapted virus also infected standard BALB/c and C57BL/6 mice, causing severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Nucleotídeos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
EMBO Rep ; 24(5): e55543, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36880575

RESUMO

Regulatory T (T reg) cells developing in the thymus are essential to maintain tolerance and prevent fatal autoimmunity in mice and humans. Expression of the T reg lineage-defining transcription factor FoxP3 is critically dependent upon T cell receptor (TCR) and interleukin-2 (IL-2) signaling. Here, we report that ten-eleven translocation (Tet) enzymes, which are DNA demethylases, are required early during double-positive (DP) thymic T cell differentiation and prior to the upregulation of FoxP3 in CD4 single-positive (SP) thymocytes, to promote Treg differentiation. We show that Tet3 selectively controls the development of CD25- FoxP3lo CD4SP Treg cell precursors in the thymus and is critical for TCR-dependent IL-2 production, which drive chromatin remodeling at the FoxP3 locus as well as other Treg-effector gene loci in an autocrine/paracrine manner. Together, our results demonstrate a novel role for DNA demethylation in regulating the TCR response and promoting Treg cell differentiation. These findings highlight a novel epigenetic pathway to promote the generation of endogenous Treg cells for mitigation of autoimmune responses.


Assuntos
Desmetilação do DNA , Interleucina-2 , Humanos , Camundongos , Animais , Timo , Linfócitos T Reguladores , Receptores de Antígenos de Linfócitos T/metabolismo , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo
4.
Cell ; 143(6): 911-23, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145458

RESUMO

Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR⁻(/)⁻ pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR⁻(/)⁻ epithelia showed markedly reduced Cl⁻ and HCO3⁻ transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR⁻(/)⁻ pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl⁻ conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl⁻ and HCO3⁻ in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease.


Assuntos
Ânions/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Transporte de Íons , Sistema Respiratório/patologia , Animais , Animais Recém-Nascidos , Epitélio/metabolismo , Humanos , Sistema Respiratório/metabolismo , Sus scrofa
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046051

RESUMO

Submucosal glands (SMGs) protect lungs but can also contribute to disease. For example, in cystic fibrosis (CF), SMGs produce abnormal mucus that disrupts mucociliary transport. CF is an ion transport disease, yet knowledge of the ion transporters expressed by SMG acini, which produce mucus, and SMG ducts that carry it to the airway lumen is limited. Therefore, we isolated SMGs from newborn pigs and used single-cell messenger RNA sequencing, immunohistochemistry, and in situ hybridization to identify cell types, gene expression, and spatial distribution. Cell types and transcript levels were the same in non-CF and CF SMGs, suggesting that loss of epithelial anion secretion rather than an intrinsic cell defect causes CF mucus abnormalities. Gene signatures of acinar mucous and acinar serous cells revealed specialized functions in producing mucins and antimicrobials, respectively. However, surprisingly, these two cell types expressed the same ion transporters and neurohumoral receptors, suggesting the importance of balancing mucin and liquid secretion to produce optimal mucus properties. SMG duct cell transcripts suggest that they secrete HCO3- and Cl-, and thus have some similarity to pancreatic ducts that are also defective in CF. These and additional findings suggest the functions of the SMG acinus and duct and provide a baseline for understanding how environmental and genetic challenges impact their contribution to lung disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/metabolismo , Mutação , Mucosa Respiratória/metabolismo , Células Acinares/metabolismo , Animais , Biomarcadores , Fibrose Cística/etiologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Mucinas/metabolismo , Depuração Mucociliar , Muco/metabolismo , Mucosa Respiratória/patologia , Suínos
6.
Am J Physiol Cell Physiol ; 326(2): C540-C550, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145296

RESUMO

Vitamin D deficiency is a risk factor for exacerbation of obstructive airway disease, a hallmark of which is mucus dehydration and plugging. Calcitriol (the active form of vitamin D) deficiency in cultured human airway epithelia resulted in increased SCNN1G and ATP1B1 mRNAs encoding subunits of ENaC and the Na-K pump compared with supplemented epithelia. These drive the absorption of airway surface liquid. Consistently, calcitriol-deficient epithelia absorbed liquid faster than supplemented epithelia. Calcitriol deficiency also increased amiloride-sensitive Isc and Gt without altering Na-K pump activity, indicating the changes in amiloride-sensitivity arose from ENaC. ENaC activity can be regulated by trafficking, proteases, and channel abundance. We found the effect was likely not induced by changes to endocytosis of ENaC given that calcitriol did not affect the half-lives of amiloride-sensitive Isc and Gt. Furthermore, trypsin nominally increased Isc produced by epithelia ± calcitriol, suggesting calcitriol did not affect proteolytic activation of ENaC. Consistent with mRNA and functional data, calcitriol deficiency resulted in increased γENaC protein. These data indicate that the vitamin D receptor response controls ENaC function and subsequent liquid absorption, providing insight into the relationship between vitamin D deficiency and respiratory disease.NEW & NOTEWORTHY It is unknown why calcitriol (active vitamin D) deficiency worsens pulmonary disease outcomes. Results from mRNA, immunoblot, Ussing chamber, and absorption experiments indicate that calcitriol deficiency increases ENaC activity in human airway epithelia, decreasing apical hydration. Given that epithelial hydration is required for mucociliary transport and airway innate immune function, the increased ENaC activity observed in calcitriol-deficient epithelia may contribute to respiratory pathology observed in vitamin D deficiency.


Assuntos
Amilorida , Deficiência de Vitamina D , Humanos , Vitamina D , Calcitriol/farmacologia , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Pulmão/metabolismo , Vitaminas , RNA Mensageiro/genética
7.
J Infect Dis ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698016

RESUMO

BACKGROUND: Chronic pulmonary conditions such as asthma and COPD increase the risk of morbidity and mortality during infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). We hypothesized that individuals with such comorbidities are more susceptible to MERS-CoV infection due to increased expression of its receptor, dipeptidyl peptidase 4 (DPP4). METHODS: We modeled chronic airway disease by treating primary human airway epithelia with the Th2 cytokine IL-13, examining how this impacted DPP4 protein levels along with MERS-CoV entry and replication. RESULTS: IL-13 exposure for 3 days led to increased DPP4 protein abundance, while a 21-day treatment increased DPP4 levels and caused goblet cell metaplasia. Surprisingly, despite this increase in receptor availability, MERS-CoV entry and replication were not significantly impacted by IL-13 treatment. CONCLUSIONS: Our results suggest that increased DPP4 abundance is likely not the primary mechanism leading to increased MERS severity in the setting of Th2 inflammation. Transcriptional profiling analysis highlighted the complexity of IL-13 induced changes in airway epithelia, including altered expression of genes involved in innate immunity, antiviral responses, and maintenance of the extracellular mucus barrier. These data suggest that additional factors likely interact with DPP4 abundance to determine MERS-CoV infection outcomes.

8.
PLoS Pathog ; 17(8): e1009458, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383863

RESUMO

Measles virus (MeV) is the most contagious human virus. Unlike most respiratory viruses, MeV does not directly infect epithelial cells upon entry in a new host. MeV traverses the epithelium within immune cells that carry it to lymphatic organs where amplification occurs. Infected immune cells then synchronously deliver large amounts of virus to the airways. However, our understanding of MeV replication in airway epithelia is limited. To model it, we use well-differentiated primary cultures of human airway epithelial cells (HAE) from lung donors. In HAE, MeV spreads directly cell-to-cell forming infectious centers that grow for ~3-5 days, are stable for a few days, and then disappear. Transepithelial electrical resistance remains intact during the entire course of HAE infection, thus we hypothesized that MeV infectious centers may dislodge while epithelial function is preserved. After documenting by confocal microscopy that infectious centers progressively detach from HAE, we recovered apical washes and separated cell-associated from cell-free virus by centrifugation. Virus titers were about 10 times higher in the cell-associated fraction than in the supernatant. In dislodged infectious centers, ciliary beating persisted, and apoptotic markers were not readily detected, suggesting that they retain functional metabolism. Cell-associated MeV infected primary human monocyte-derived macrophages, which models the first stage of infection in a new host. Single-cell RNA sequencing identified wound healing, cell growth, and cell differentiation as biological processes relevant for infectious center dislodging. 5-ethynyl-2'-deoxyuridine (EdU) staining located proliferating cells underneath infectious centers. Thus, cells located below infectious centers divide and differentiate to repair the dislodged infected epithelial patch. As an extension of these studies, we postulate that expulsion of infectious centers through coughing and sneezing could contribute to MeV's strikingly high reproductive number by allowing the virus to survive longer in the environment and by delivering a high infectious dose to the next host.


Assuntos
Células Epiteliais/virologia , Macrófagos/virologia , Vírus do Sarampo/patogenicidade , Sarampo/virologia , Sistema Respiratório/virologia , Internalização do Vírus , Replicação Viral , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Macrófagos/metabolismo , Sarampo/genética , Sarampo/metabolismo , RNA-Seq , Sistema Respiratório/metabolismo , Análise de Célula Única , Transcriptoma
9.
Am J Respir Cell Mol Biol ; 67(4): 491-502, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35849656

RESUMO

In cystic fibrosis (CF), reduced HCO3- secretion acidifies the airway surface liquid (ASL), and the acidic pH disrupts host defenses. Thus, understanding the control of ASL pH (pHASL) in CF may help identify novel targets and facilitate therapeutic development. In diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate HCO3- and Cl- transport, but their functions in airway epithelia are poorly understood. Here, we tested the hypothesis that WNK kinases regulate CF pHASL. In primary cultures of differentiated human airway epithelia, inhibiting WNK kinases acutely increased both CF and non-CF pHASL. This response was HCO3- dependent and involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein kinase/oxidative stress responsive 1 kinase). Importantly, WNK inhibition enhanced key host defenses otherwise impaired in CF. Human airway epithelia expressed two WNK isoforms in secretory cells and ionocytes, and knockdown of either WNK1 or WNK2 increased CF pHASL. WNK inhibition decreased Cl- secretion and the response to bumetanide, an NKCC1 (sodium-potassium-chloride cotransporter 1) inhibitor. Surprisingly, bumetanide alone or basolateral Cl- substitution also alkalinized CF pHASL. These data suggest that WNK kinases influence the balance between transepithelial Cl- versus HCO3- secretion. Moreover, reducing basolateral Cl- entry may increase HCO3- secretion and raise pHASL, thereby improving CF host defenses.


Assuntos
Fibrose Cística , Alanina , Bumetanida , Humanos , Concentração de Íons de Hidrogênio , Prolina , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
10.
Am J Respir Cell Mol Biol ; 66(6): 612-622, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235762

RESUMO

Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Transporte de Íons , Sistema Respiratório/metabolismo , Suínos
11.
Am J Physiol Cell Physiol ; 323(4): C1044-C1051, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993520

RESUMO

Na/K ATPase activity is essential for ion transport across epithelia. FXYD3, a γ subunit of the Na/K ATPase, is expressed in the airway, but its function remains undetermined. Single-cell RNA sequencing and immunohistochemistry revealed that FXYD3 localizes within the basolateral membrane of all airway epithelial cells. To study FXYD3 function, we reduced FXYD3 expression using siRNA. After permeabilizing the apical membrane with nystatin, epithelia pretreated with FXYD3-targeting siRNA had lower ouabain-sensitive short-circuit currents than control epithelia. FXYD3-targeting siRNA also reduced amiloride-sensitive short-circuit currents and liquid absorption across intact epithelia. These data are consistent with FXYD3 facilitating Na+ and liquid absorption. FXYD3 may be needed to maintain the high rates of Na+ and fluid absorption observed for airway and other FXYD3-expressing epithelia.


Assuntos
Amilorida , Ouabaína , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Nistatina , RNA Interferente Pequeno/genética , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
12.
Radiology ; 304(1): 185-192, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35289657

RESUMO

Background The long-term effects of SARS-CoV-2 infection on pulmonary structure and function remain incompletely characterized. Purpose To test whether SARS-CoV-2 infection leads to small airways disease in patients with persistent symptoms. Materials and Methods In this single-center study at a university teaching hospital, adults with confirmed COVID-19 who remained symptomatic more than 30 days following diagnosis were prospectively enrolled from June to December 2020 and compared with healthy participants (controls) prospectively enrolled from March to August 2018. Participants with post-acute sequelae of COVID-19 (PASC) were classified as ambulatory, hospitalized, or having required the intensive care unit (ICU) based on the highest level of care received during acute infection. Symptoms, pulmonary function tests, and chest CT images were collected. Quantitative CT analysis was performed using supervised machine learning to measure regional ground-glass opacity (GGO) and using inspiratory and expiratory image-matching to measure regional air trapping. Univariable analyses and multivariable linear regression were used to compare groups. Results Overall, 100 participants with PASC (median age, 48 years; 66 women) were evaluated and compared with 106 matched healthy controls; 67% (67 of 100) of the participants with PASC were classified as ambulatory, 17% (17 of 100) were hospitalized, and 16% (16 of 100) required the ICU. In the hospitalized and ICU groups, the mean percentage of total lung classified as GGO was 13.2% and 28.7%, respectively, and was higher than that in the ambulatory group (3.7%, P < .001 for both comparisons). The mean percentage of total lung affected by air trapping was 25.4%, 34.6%, and 27.3% in the ambulatory, hospitalized, and ICU groups, respectively, and 7.2% in healthy controls (P < .001). Air trapping correlated with the residual volume-to-total lung capacity ratio (ρ = 0.6, P < .001). Conclusion In survivors of COVID-19, small airways disease occurred independently of initial infection severity. The long-term consequences are unknown. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Elicker in this issue.


Assuntos
COVID-19/complicações , Pneumopatias , COVID-19/diagnóstico por imagem , Feminino , Humanos , Pneumopatias/diagnóstico por imagem , Pneumopatias/virologia , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Síndrome de COVID-19 Pós-Aguda
13.
Bioinformatics ; 37(19): 3243-3251, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33970215

RESUMO

MOTIVATION: Single-cell RNA-sequencing (scRNA-seq) provides more granular biological information than bulk RNA-sequencing; bulk RNA sequencing remains popular due to lower costs which allows processing more biological replicates and design more powerful studies. As scRNA-seq costs have decreased, collecting data from more than one biological replicate has become more feasible, but careful modeling of different layers of biological variation remains challenging for many users. Here, we propose a statistical model for scRNA-seq gene counts, describe a simple method for estimating model parameters and show that failing to account for additional biological variation in scRNA-seq studies can inflate false discovery rates (FDRs) of statistical tests. RESULTS: First, in a simulation study, we show that when the gene expression distribution of a population of cells varies between subjects, a naïve approach to differential expression analysis will inflate the FDR. We then compare multiple differential expression testing methods on scRNA-seq datasets from human samples and from animal models. These analyses suggest that a naïve approach to differential expression testing could lead to many false discoveries; in contrast, an approach based on pseudobulk counts has better FDR control. AVAILABILITY AND IMPLEMENTATION: A software package, aggregateBioVar, is freely available on Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/aggregateBioVar.html) to accommodate compatibility with upstream and downstream methods in scRNA-seq data analysis pipelines. SUPPLEMENTARY INFORMATION: Raw gene-by-cell count matrices for pig scRNA-seq data are available as GEO accession GSE150211. Supplementary data are available at Bioinformatics online.

14.
Am J Respir Crit Care Med ; 204(6): 692-702, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34170795

RESUMO

Rationale: Although it is clear that cystic fibrosis (CF) airway disease begins at a very young age, the early and subsequent steps in disease pathogenesis and the relative contribution of infection, mucus, and inflammation are not well understood. Objectives: As one approach to assessing the early contribution of infection, we tested the hypothesis that early and continuous antibiotics would decrease the airway bacterial burden. We believed that, if they do, this might reveal aspects of the disease that are more or less sensitive to decreasing infection. Methods: Three groups of pigs were studied from birth until ∼3 weeks of age: 1) wild-type, 2) CF, and 3) CF pigs treated continuously with broad-spectrum antibiotics from birth until study completion. Disease was assessed with chest computed tomography, histopathology, microbiology, and BAL. Measurements and Main Results: Disease was present by 3 weeks of age in CF pigs. Continuous antibiotics from birth improved chest computed tomography imaging abnormalities and airway mucus accumulation but not airway inflammation in the CF pig model. However, reducing bacterial infection did not improve two disease features already present at birth in CF pigs: air trapping and submucosal gland duct plugging. In the CF sinuses, antibiotics did not prevent the development of infection or disease or the number of bacteria but did alter the bacterial species. Conclusions: These findings suggest that CF airway disease begins immediately after birth and that early and continuous antibiotics impact some, but not all, aspects of CF lung disease development.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Pulmão/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Bactérias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/microbiologia , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/patologia , Pulmão/diagnóstico por imagem , Pulmão/microbiologia , Pulmão/patologia , Tomografia Computadorizada Multidetectores , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Suínos
15.
Am J Physiol Cell Physiol ; 319(2): C331-C344, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432926

RESUMO

The pH of airway surface liquid (ASL) is a key factor that determines respiratory host defense; ASL acidification impairs and alkalinization enhances key defense mechanisms. Under healthy conditions, airway epithelia secrete base ([Formula: see text]) and acid (H+) to control ASL pH (pHASL). Neutrophil-predominant inflammation is a hallmark of several airway diseases, and TNFα and IL-17 are key drivers. However, how these cytokines perturb pHASL regulation is uncertain. In primary cultures of differentiated human airway epithelia, TNFα decreased and IL-17 did not change pHASL. However, the combination (TNFα+IL-17) markedly increased pHASL by increasing [Formula: see text] secretion. TNFα+IL-17 increased expression and function of two apical [Formula: see text] transporters, CFTR anion channels and pendrin Cl-/[Formula: see text] exchangers. Both were required for maximal alkalinization. TNFα+IL-17 induced pendrin expression primarily in secretory cells where it was coexpressed with CFTR. Interestingly, significant pendrin expression was not detected in CFTR-rich ionocytes. These results indicate that TNFα+IL-17 stimulate [Formula: see text] secretion via CFTR and pendrin to alkalinize ASL, which may represent an important defense mechanism in inflamed airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Interleucina-17/genética , Mucosa Respiratória/metabolismo , Transportadores de Sulfato/genética , Fator de Necrose Tumoral alfa/genética , Álcalis/metabolismo , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
J Physiol ; 598(19): 4307-4320, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32627187

RESUMO

KEY POINTS: Cl- and HCO3- had similar paracellular permeabilities in human airway epithelia. PCl /PNa of airway epithelia was unaltered by pH 7.4 vs. pH 6.0 solutions. Under basal conditions, calculated paracellular HCO3- flux was secretory. Cytokines that increased airway surface liquid pH decreased or reversed paracellular HCO3- flux. HCO3- flux through the paracellular pathway may counterbalance effects of cellular H+ and HCO3- secretion. ABSTRACT: Airway epithelia control the pH of airway surface liquid (ASL), thereby optimizing respiratory defences. Active H+ and HCO3- secretion by airway epithelial cells produce an ASL that is acidic compared with the interstitial space. The paracellular pathway could provide a route for passive HCO3- flux that also modifies ASL pH. However, there is limited information about paracellular HCO3- flux, and it remains uncertain whether an acidic pH produced by loss of cystic fibrosis transmembrane conductance regulator anion channels or proinflammatory cytokines might alter the paracellular pathway function. To investigate paracellular HCO3- transport, we studied differentiated primary cultures of human cystic fibrosis (CF) and non-CF airway epithelia. The paracellular pathway was pH-insensitive at pH 6.0 vs. pH 7.4 and was equally permeable to Cl- and HCO3- . Under basal conditions at pH ∼6.6, calculated paracellular HCO3- flux was weakly secretory. Treating epithelia with IL-17 plus TNFα alkalinized ASL pH to ∼7.0, increased paracellular HCO3- permeability, and paracellular HCO3- flux was negligible. Applying IL-13 increased ASL pH to ∼7.4 without altering paracellular HCO3- permeability, and calculated paracellular HCO3- flux was absorptive. These results suggest that HCO3- flux through the paracellular pathway counterbalances, in part, changes in the ASL pH produced via cellular mechanisms. As the pH of ASL increases towards that of basolateral liquid, paracellular HCO3- flux becomes absorptive, tempering the alkaline pH generated by transcellular HCO3- secretion.


Assuntos
Bicarbonatos , Fibrose Cística , Bicarbonatos/metabolismo , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística , Epitélio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Mucosa Respiratória/metabolismo , Sistema Respiratório
17.
Lab Invest ; 100(11): 1388-1399, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719544

RESUMO

Hepatobiliary disease causes significant morbidity in people with cystic fibrosis (CF), yet this problem remains understudied. We previously found that newborn CF pigs have microgallbladders with significant luminal obstruction in the absence of infection and consistent inflammation. In this study, we sought to better understand the early pathogenesis of CF pig gallbladder disease. We hypothesized that loss of CFTR would impair gallbladder epithelium anion/liquid secretion and increase mucin production. CFTR was expressed apically in non-CF pig gallbladder epithelium but was absent in CF. CF pig gallbladders lacked cAMP-stimulated anion transport. Using a novel gallbladder epithelial organoid model, we found that Cl- or HCO3- was sufficient for non-CF organoid swelling. This response was absent for non-CF organoids in Cl-/HCO3--free conditions and in CF. Single-cell RNA-sequencing revealed a single epithelial cell type in non-CF gallbladders that coexpressed CFTR, MUC5AC, and MUC5B. Despite CF gallbladders having increased luminal MUC5AC and MUC5B accumulation, there was no significant difference in the epithelial expression of gel-forming mucins between non-CF and CF pig gallbladders. In conclusion, these data suggest that loss of CFTR-mediated anion transport and fluid secretion contribute to microgallbladder development and luminal mucus accumulation in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/complicações , Doenças da Vesícula Biliar/etiologia , Vesícula Biliar/metabolismo , Animais , Animais Recém-Nascidos , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Vesícula Biliar/fisiopatologia , Doenças da Vesícula Biliar/metabolismo , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Suínos , Transcriptoma
18.
Gene Ther ; 26(6): 240-249, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962536

RESUMO

Adeno-associated virus (AAV) has been investigated to transfer the cystic fibrosis transmembrane conductance regulator (CFTR) to airways. Inhaled AAV2-CFTR in people with cystic fibrosis (CF) is safe, but inefficient. In vitro, AAV2 transduction of human airway epithelia on the apical (luminal) side is inefficient, but efficient basolaterally. We previously selected AAV2.5T, a novel capsid that apically transduces CF human airway epithelia and efficiently restores CFTR function. We hypothesize the AAV receptor (AAVR) is basolaterally localized, and that AAV2.5T utilizes an alternative apical receptor. We found AAVR in human airway epithelia by western blot and RNA-Seq analyses. Using immunocytochemistry we did not find endogenous AAVR at membranes but overexpression localized AAVR to the basolateral membrane, where it preferentially increased transduction. Anti-AAVR antibodies blocked transduction by AAV2 from the basolateral side but not AAV2.5T from the apical side, suggesting a unique apical receptor. Finally, we found infection by AAV2 but not AAV2.5T was blocked by CRISPR knockout of AAVR in cell lines. Our data suggest the absence of apical AAVR is rate limiting for AAV2, and efficient transduction by AAV2.5T is accomplished using an AAVR independent pathway. Our findings inform the development of gene therapy for CF, and AAV vectors in general.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Receptores de Superfície Celular/genética , Transfecção/métodos , Linhagem Celular , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Receptores de Superfície Celular/metabolismo , Mucosa Respiratória/metabolismo
19.
Nature ; 487(7405): 109-13, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22763554

RESUMO

Cystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how the loss of CFTR function first disrupts airway host defence has remained uncertain. To investigate the abnormalities that impair elimination when a bacterium lands on the pristine surface of a newborn CF airway, we interrogated the viability of individual bacteria immobilized on solid grids and placed onto the airway surface. As a model, we studied CF pigs, which spontaneously develop hallmark features of CF lung disease. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly kills bacteria in vivo, when removed from the lung and in primary epithelial cultures. Lack of CFTR reduces bacterial killing. We found that the ASL pH was more acidic in CF pigs, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and, conversely, increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defence defect to the loss of CFTR, an anion channel that facilitates HCO(3)(-) transport. Without CFTR, airway epithelial HCO(3)(-) secretion is defective, the ASL pH falls and inhibits antimicrobial function, and thereby impairs the killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF, and that assaying bacterial killing could report on the benefit of therapeutic interventions.


Assuntos
Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Viabilidade Microbiana , Sistema Respiratório/metabolismo , Animais , Animais Recém-Nascidos , Anti-Infecciosos/farmacologia , Bicarbonatos/metabolismo , Líquidos Corporais/efeitos dos fármacos , Líquidos Corporais/metabolismo , Fibrose Cística/patologia , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Feminino , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Transporte de Íons , Pulmão/patologia , Masculino , Viabilidade Microbiana/efeitos dos fármacos , Sus scrofa/microbiologia
20.
Clin Transplant ; 31(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28295601

RESUMO

BACKGROUND: Idiopathic hyperammonemia syndrome (IHS) is an uncommon, often deadly complication of solid organ transplantation. IHS cases in solid organ transplantation seem to occur predominantly in lung transplant (LTx) recipients. However, to the best of our knowledge, the occurrence of IHS has not been systematically evaluated. We set out to identify all reported cases of IHS following nonliver solid organ transplantations. METHODS: Retrospective review of our institutional experience and systematic review of the literature. RESULTS: At our institution six cases (of 844 nonliver solid organ transplants) of IHS were identified: five occurred following LTx (incidence 3.9% [lung] vs 0.1% [nonlung], P=.004). In the systematic review, 16 studies met inclusion criteria, reporting on 32 cases of IHS. The majority of IHS cases in the literature (81%) were LTx-recipients. The average peak reported ammonia level was 1039 µmol/L occurring on average 14.7 days post-transplant. Mortality in previously reported IHS cases was 69%. A single-center experience suggested that, in addition to standard treatment for hyperammonemia, early initiation of high intensity hemodialysis to remove ammonia was associated with increased survival. In the systematic review, mortality was 40% (four of 10) with intermittent hemodialysis, 75% (nine of 12) with continuous veno-venous hemodialysis, and 100% in six subjects that did not receive renal replacement to remove ammonia. Three reports identified infection with urease producing organisms as a possible etiology of IHS. CONCLUSION: IHS is a rare but often fatal complication that primarily affects lung transplant recipients within the first 30 days.


Assuntos
Hiperamonemia/etiologia , Pneumopatias/fisiopatologia , Transplante de Órgãos/efeitos adversos , Humanos , Metanálise como Assunto , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA