Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119783

RESUMO

Understanding xylem embolism formation is challenging due to dynamic changes and multiphase interactions in conduits. Here, we hypothesise that embolism spread involves gas diffusion in xylem, and is affected by time. We measured hydraulic conductivity (Kh) in flow-centrifuge experiments over 1 h at a given pressure and temperature for stem samples of three angiosperm species. Temporal changes in Kh at 5, 22, and 35°C, and at various pressures were compared to modelled gas concentration changes in a recently embolised vessel in the centre of a centrifuge sample. Temporal changes in Kh were logarithmic and species-specific. Maximum relative increases of Kh between 6% and 40% happened at 22°C for low centrifugal speed (<3250 RPM), while maximum decreases between 41% and 61% occurred at higher speeds. These reductions in Kh were experimentally shown to be associated with a temporal increase of embolism at the centre of centrifuge samples, which was likely associated with gas concentration increases in recently embolized vessels. Although embolism is mostly pressure-driven, our experimental and modelled data indicate that time, conduit characteristics, and temperature are involved due to their potential role in gas diffusion. Gas diffusion, however, does not seem to cover the entire process of embolism spread.

2.
J Synchrotron Radiat ; 30(Pt 1): 192-199, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601937

RESUMO

The investigation of lithium-ion battery failures is a major challenge for personnel and equipment due to the associated hazards (thermal reaction, toxic gases and explosions). To perform such experiments safely, a battery abuse-test chamber has been developed and installed at the microtomography beamline ID19 of the European Synchrotron Radiation Facility (ESRF). The chamber provides the capability to robustly perform in situ abuse tests through the heat-resistant and gas-tight design for flexible battery geometries and configurations, including single-cell and multi-cell assemblies. High-speed X-ray imaging can be complemented by supplementary equipment, including additional probes (voltage, pressure and temperature) and thermal imaging. Together with the test chamber, a synchronization graphical user interface was developed, which allows an initial interpretation by time-synchronous visualization of the acquired data. Enabled by this setup, new meaningful insights can be gained into the internal processes of a thermal runaway of current and future energy-storage devices such as lithium-ion cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA