Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 98(4): 1749-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24389666

RESUMO

The "bakanae" fungus Fusarium fujikuroi is a common pathogen of rice and produces a variety of mycotoxins, pigments, and phytohormones. Fusaric acid is one of the oldest known secondary metabolites produced by F. fujikuroi and some other Fusarium species. Investigation of its biosynthesis and regulation is of great interest due to its occurrence in cereal-based food and feed. This study describes the identification and characterization of the fusaric acid gene cluster in F. fujikuroi consisting of the PKS-encoding core gene and four co-regulated genes, FUB1-FUB5. Besides fusaric acid, F. fujikuroi produces two fusaric acid-like derivatives: fusarinolic acid and 9,10-dehydrofusaric acid. We provide evidence that these derivatives are not intermediates of the fusaric acid biosynthetic pathway, and that their formation is catalyzed by genes outside of the fusaric acid gene cluster. Target gene deletions of all five cluster genes revealed that not all of them are involved in fusaric acid biosynthesis. We suggest that only two genes, FUB1 and FUB4, are necessary for the biosynthesis. Expression of the FUB genes and production of fusaric acid and the two derivatives are favored under high nitrogen. We show that nitrogen-dependent expression of fusaric acid genes is positively regulated by the nitrogen-responsive GATA transcription factor AreB, and that pH-dependent regulation is mediated by the transcription factor PacC. In addition, fusaric acid production is regulated by two members of the fungal-specific velvet complex: Vel1 and Lae1. In planta expression studies show a higher expression in the favorite host plant rice compared to maize.


Assuntos
Proteínas Fúngicas/metabolismo , Ácido Fusárico/metabolismo , Fusarium/genética , Família Multigênica/genética , Proteínas Fúngicas/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica
2.
Front Microbiol ; 8: 381, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28352253

RESUMO

Secondary metabolite production of the phytopathogenic ascomycete fungus Fusarium fujikuroi is greatly influenced by the availability of nitrogen. While favored nitrogen sources such as glutamine and ammonium are used preferentially, the uptake and utilization of nitrate is subject to a regulatory mechanism called nitrogen metabolite repression (NMR). In Aspergillus nidulans, the transcriptional control of the nitrate assimilatory system is carried out by the synergistic action of the nitrate-specific transcription factor NirA and the major nitrogen-responsive regulator AreA. In this study, we identified the main components of the nitrate assimilation system in F. fujikuroi and studied the role of each of them regarding the regulation of the remaining components. We analyzed mutants with deletions of the nitrate-specific activator NirA, the nitrate reductase (NR), the nitrite reductase (NiR) and the nitrate transporter NrtA. We show that NirA controls the transcription of the nitrate assimilatory genes NIAD, NIIA, and NRTA in the presence of nitrate, and that the global nitrogen regulator AreA is obligatory for expression of most, but not all NirA target genes (NIAD). By transforming a NirA-GFP fusion construct into the ΔNIAD, ΔNRTA, and ΔAREA mutant backgrounds we revealed that NirA was dispersed in the cytosol when grown in the presence of glutamine, but rapidly sorted to the nucleus when nitrate was added. Interestingly, the rapid and nitrate-induced nuclear translocation of NirA was observed also in the ΔAREA and ΔNRTA mutants, but not in ΔNIAD, suggesting that the fungus is able to directly sense nitrate in an AreA- and NrtA-independent, but NR-dependent manner.

3.
PLoS One ; 12(4): e0176194, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28441411

RESUMO

The biosynthesis of multiple secondary metabolites in the phytopathogenic ascomycete Fusarium fujikuroi is strongly affected by nitrogen availability. Here, we present the first genome-wide transcriptome and proteome analysis that compared the wild type and deletion mutants of the two major nitrogen regulators AreA and AreB. We show that AreB acts not simply as an antagonist of AreA counteracting the expression of AreA target genes as suggested based on the yeast model. Both GATA transcription factors affect a large and diverse set of common as well as specific target genes and proteins, acting as activators and repressors. We demonstrate that AreA and AreB are not only involved in fungal nitrogen metabolism, but also in the control of several complex cellular processes like carbon metabolism, transport and secondary metabolism. We show that both GATA transcription factors can be considered as master regulators of secondary metabolism as they affect the expression of more than half of the 47 putative secondary metabolite clusters identified in the genome of F. fujikuroi. While AreA acts as a positive regulator of many clusters under nitrogen-limiting conditions, AreB is able to activate and repress gene clusters (e.g. bikaverin) under nitrogen limitation and sufficiency. In addition, ChIP analyses revealed that loss of AreA or AreB causes histone modifications at some of the regulated gene clusters.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Fatores de Transcrição GATA/genética , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fatores de Transcrição GATA/metabolismo , Genoma Fúngico , Proteoma , Metabolismo Secundário , Transcriptoma
4.
PLoS One ; 10(4): e0125487, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909858

RESUMO

The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to yeast.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Nitrogênio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Vacúolos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Membrana Celular/metabolismo , Fusarium/genética , Genoma Fúngico/genética , Mutação/genética , Proteínas Quinases/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/genética , Ubiquitinação/fisiologia , Vacúolos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA