Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 80(6): 940-954.e6, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33202251

RESUMO

Mechanisms that control mobilization of cytosolic calcium [Ca2+]i are key for regulation of numerous eukaryotic cell functions. One such paradigmatic mechanism involves activation of phospholipase Cß (PLCß) enzymes by G protein ßγ subunits from activated Gαi-Gßγ heterotrimers. Here, we report identification of a master switch to enable this control for PLCß enzymes in living cells. We find that the Gαi-Gßγ-PLCß-Ca2+ signaling module is entirely dependent on the presence of active Gαq. If Gαq is pharmacologically inhibited or genetically ablated, Gßγ can bind to PLCß but does not elicit Ca2+ signals. Removal of an auto-inhibitory linker that occludes the active site of the enzyme is required and sufficient to empower "stand-alone control" of PLCß by Gßγ. This dependence of Gi-Gßγ-Ca2+ on Gαq places an entire signaling branch of G-protein-coupled receptors (GPCRs) under hierarchical control of Gq and changes our understanding of how Gi-GPCRs trigger [Ca2+]i via PLCß enzymes.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Fosfolipase C beta/genética , Cálcio/metabolismo , Sinalização do Cálcio/genética , Citosol/metabolismo , Células HEK293 , Humanos , Ligação Proteica/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética
2.
J Biol Chem ; 296: 100472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639168

RESUMO

Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR-Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/fisiologia , Transdução de Sinais/fisiologia , Depsipeptídeos/farmacologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Humanos , Peptídeos Cíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos
3.
J Biol Chem ; 295(16): 5206-5215, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32122969

RESUMO

Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein-coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family-specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.


Assuntos
Antineoplásicos/farmacologia , Depsipeptídeos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas Oncogênicas/antagonistas & inibidores , Animais , Antineoplásicos/química , Depsipeptídeos/química , Descoberta de Drogas/métodos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas Oncogênicas/metabolismo , Transdução de Sinais
4.
ACS Chem Biol ; 17(2): 463-473, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042325

RESUMO

Chemical probes that specifically modulate the activity of heterotrimeric G proteins provide excellent tools for investigating G protein-mediated cell signaling. Herein, we report a family of selective peptidyl Gαi/s modulators derived from peptide library screening and optimization. Conjugation to a cell-penetrating peptide rendered the peptides cell-permeable and biologically active in cell-based assays. The peptides exhibit potent guanine-nucleotide exchange modulator-like activity toward Gαi and Gαs. Molecular docking and dynamic simulations revealed the molecular basis of the protein-ligand interactions and their effects on GDP binding. This study demonstrates the feasibility of developing direct Gαi/s modulators and provides a novel chemical probe for investigating cell signaling through GPCRs/G proteins.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Nucleotídeos , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/farmacologia , Simulação de Acoplamento Molecular , Nucleotídeos/metabolismo , Peptídeos/química , Transdução de Sinais
5.
ACS Pharmacol Transl Sci ; 3(5): 859-867, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33073186

RESUMO

Allosteric coupling describes a reciprocal process whereby G-protein-coupled receptors (GPCRs) relay ligand-induced conformational changes from the extracellular binding pocket to the intracellular signaling surface. Therefore, GPCR activation is sensitive to both the type of extracellular ligand and intracellular signaling protein. We hypothesized that ligand-specific allosteric coupling may result in preferential (i.e., biased) engagement of downstream effectors. However, the structural basis underlying ligand-dependent control of this essential allosteric mechanism is poorly understood. Here, we show that two sets of extended muscarinic acetylcholine receptor M1 agonists, which only differ in linker length, progressively constrain receptor signaling. We demonstrate that stepwise shortening of their chemical linker gradually hampers binding pocket closure, resulting in divergent coupling to distinct G-protein families. Our data provide an experimental strategy for the design of ligands with selective G-protein recognition and reveal a potentially general mechanism of ligand-specific allosteric coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA