Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(3): 474-486, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36703005

RESUMO

The cross-talk between thymocytes and thymic stromal cells is fundamental for T cell development. In humans, intrathymic development of dendritic cells (DCs) is evident but its physiological significance is unknown. Here we showed that DC-biased precursors depended on the expression of the transcription factor IRF8 to express the membrane-bound precursor form of the cytokine TNF (tmTNF) to promote differentiation of thymus seeding hematopoietic progenitors into T-lineage specified precursors through activation of the TNF receptor (TNFR)-2 instead of TNFR1. In vitro recapitulation of TNFR2 signaling by providing low-density tmTNF or a selective TNFR2 agonist enhanced the generation of human T cell precursors. Our study shows that, in addition to mediating thymocyte selection and maturation, DCs function as hematopoietic stromal support for the early stages of human T cell development and provide proof of concept that selective targeting of TNFR2 can enhance the in vitro generation of T cell precursors for clinical application.


Assuntos
Células Dendríticas , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Diferenciação Celular , Linhagem da Célula , Fatores Reguladores de Interferon/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Timo/metabolismo , Fatores de Necrose Tumoral/metabolismo
2.
J Neuroinflammation ; 20(1): 100, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37122019

RESUMO

BACKGROUND: Tumour necrosis factor (TNF) is a pleiotropic cytokine and master regulator of the immune system. It acts through two receptors resulting in often opposing biological effects, which may explain the lack of therapeutic potential obtained so far in multiple sclerosis (MS) with non-receptor-specific anti-TNF therapeutics. Under neuroinflammatory conditions, such as MS, TNF receptor-1 (TNFR1) is believed to mediate the pro-inflammatory activities associated with TNF, whereas TNF receptor-2 (TNFR2) may instead induce anti-inflammatory effects as well as promote remyelination and neuroprotection. In this study, we have investigated the therapeutic potential of blocking TNFR1 whilst simultaneously stimulating TNFR2 in a mouse model of MS. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced with myelin oligodendrocyte glycoprotein (MOG35-55) in humanized TNFR1 knock-in mice. These were treated with a human-specific TNFR1-selective antagonistic antibody (H398) and a mouse-specific TNFR2 agonist (EHD2-sc-mTNFR2), both in combination and individually. Histopathological analysis of spinal cords was performed to investigate demyelination and inflammatory infiltration, as well as axonal and neuronal degeneration. Retinas were examined for any protective effects on retinal ganglion cell (RGC) degeneration and neuroprotective signalling pathways analysed by Western blotting. RESULTS: TNFR modulation successfully ameliorated symptoms of EAE and reduced demyelination, inflammatory infiltration and axonal degeneration. Furthermore, the combinatorial approach of blocking TNFR1 and stimulating TNFR2 signalling increased RGC survival and promoted the phosphorylation of Akt and NF-κB, both known to mediate neuroprotection. CONCLUSION: These results further support the potential of regulating the balance of TNFR signalling, through the co-modulation of TNFR1 and TNFR2 activity, as a novel therapeutic approach in treating inflammatory demyelinating disease.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Humanos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral , Encefalomielite Autoimune Experimental/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anticorpos/uso terapêutico
3.
J Neuroinflammation ; 20(1): 106, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138340

RESUMO

TNF signaling is an essential regulator of cellular homeostasis. Through its two receptors TNFR1 and TNFR2, soluble versus membrane-bound TNF enable cell death or survival in a variety of cell types. TNF-TNFRs signaling orchestrates important biological functions such as inflammation, neuronal activity as well as tissue de- and regeneration. TNF-TNFRs signaling is a therapeutic target for neurodegenerative diseases such as multiple sclerosis (MS) and Alzheimer's disease (AD), but animal and clinical studies yielded conflicting findings. Here, we ask whether a sequential modulation of TNFR1 and TNFR2 signaling is beneficial in experimental autoimmune encephalomyelitis (EAE), an experimental mouse model that recapitulates inflammatory and demyelinating aspects of MS. To this end, human TNFR1 antagonist and TNFR2 agonist were administered peripherally at different stages of disease development in TNFR-humanized mice. We found that stimulating TNFR2 before onset of symptoms leads to improved response to anti-TNFR1 therapeutic treatment. This sequential treatment was more effective in decreasing paralysis symptoms and demyelination, when compared to single treatments. Interestingly, the frequency of the different immune cell subsets is unaffected by TNFR modulation. Nevertheless, treatment with only a TNFR1 antagonist increases T-cell infiltration in the central nervous system (CNS) and B-cell cuffing at the perivascular sites, whereas a TNFR2 agonist promotes Treg CNS accumulation. Our findings highlight the complicated nature of TNF signaling which requires a timely balance of selective activation and inhibition of TNFRs in order to exert therapeutic effects in the context of CNS autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Humanos , Camundongos , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Inflamação , Esclerose Múltipla/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Fator de Necrose Tumoral alfa/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(34): 17045-17050, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31391309

RESUMO

Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that is linked to immune modulation and tissue regeneration. Here, we show that TNFR2 essentially promotes long-term pain resolution independently of sex. Genetic deletion of TNFR2 resulted in impaired neuronal regeneration and chronic nonresolving pain after chronic constriction injury (CCI). Further, pharmacological activation of TNFR2 using the TNFR2 agonist EHD2-sc-mTNFR2 in mice with chronic neuropathic pain promoted long-lasting pain recovery. TNFR2 agonist treatment reduced neuronal injury, alleviated peripheral and central inflammation, and promoted repolarization of central nervous system (CNS)-infiltrating myeloid cells into an antiinflammatory/reparative phenotype. Depletion of regulatory T cells (Tregs) delayed spontaneous pain recovery and abolished the therapeutic effect of EHD2-sc-mTNFR2 This study therefore reveals a function of TNFR2 in neuropathic pain recovery and demonstrates that both TNFR2 signaling and Tregs are essential for pain recovery after CCI. Therefore, therapeutic strategies based on the concept of enhancing TNFR2 signaling could be developed into a nonopioid therapy for the treatment of chronic neuropathic pain.


Assuntos
Dor Crônica/imunologia , Neuralgia/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Dor Crônica/genética , Dor Crônica/patologia , Dor Crônica/terapia , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Depleção Linfocítica , Masculino , Camundongos , Camundongos Knockout , Neuralgia/genética , Neuralgia/patologia , Neuralgia/terapia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais/genética , Linfócitos T Reguladores/patologia
5.
Brain Behav Immun ; 81: 247-259, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31220564

RESUMO

Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that promotes immune modulation and tissue regeneration and is recognized as a potential therapeutic target for multiple sclerosis (MS). However, TNFR2 also contributes to T effector cell function and macrophage-TNFR2 recently was shown to promote disease development in the experimental autoimmune encephalomyelitis (EAE) model of MS. We here demonstrate that systemic administration of a TNFR2 agonist alleviates peripheral and central inflammation, and reduces demyelination and neurodegeneration, indicating that protective signals induced by TNFR2 exceed potential pathogenic TNFR2-dependent responses. Our behavioral data show that systemic treatment of female EAE mice with a TNFR2 agonist is therapeutic on motor symptoms and promotes long-term recovery from neuropathic pain. Mechanistically, our data indicate that TNFR2 agonist treatment follows a dual mode of action and promotes both suppression of CNS autoimmunity and remyelination. Strategies based on the concept of exogenous activation of TNFR2 therefore hold great promise as a new therapeutic approach to treat motor and sensory disease in MS as well as other inflammatory diseases or neuropathic pain conditions.


Assuntos
Esclerose Múltipla/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Animais , Autoimunidade/imunologia , Doenças Desmielinizantes/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Neuralgia/patologia , Doenças Neurodegenerativas/metabolismo , Medula Espinal/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/imunologia
6.
Proc Natl Acad Sci U S A ; 113(43): 12304-12309, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791020

RESUMO

Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNFR2, an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNFR2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases.


Assuntos
Inflamação/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Animais , Anticorpos/farmacologia , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Morte Celular/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/patologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , N-Metilaspartato/genética , Degeneração Neural/induzido quimicamente , Degeneração Neural/genética , Degeneração Neural/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
7.
Cytometry A ; 87(1): 89-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25257846

RESUMO

Dendritic filopodia are tiny and highly motile protrusions formed along the dendrites of neurons. During the search for future presynaptic partners, their shape and size change dynamically, with a direct impact on the formation, stabilization and maintenance of synaptic connections both in vivo and in vitro. In order to reveal molecular players regulating synapse formation, quantitative analysis of dendritic filopodia motility is needed. Defining the length or the tips of these protrusions manually, however, is time consuming, limiting the extent of studies as well as their statistical power. Additionally, area detection based on defining a single intensity threshold can lead to significant errors throughout the image series, as these small structures often have low contrast in fluorescent images. To overcome these problems, the open access Dendritic Filopodia Motility Analyzer, a semi-automated ImageJ/Fiji plugin was created. Our method calculates the displacement of the centre of mass (CoM) within a selected region based on the weighted intensity values of structure forming pixels, selected by upper and lower intensity thresholds. Using synthetic and real biological samples, we prove that the displacement of the weighted CoM reliably characterizes the motility of dendritic protrusions. Additionally, guidelines to define optimal parameters of live cell recordings from dendritic protrusions are provided. © 2014 International Society for Advancement of Cytometry.


Assuntos
Citofotometria/instrumentação , Dendritos/ultraestrutura , Pseudópodes/ultraestrutura , Sinapses/ultraestrutura , Imagem com Lapso de Tempo/instrumentação , Animais , Movimento Celular , Citofotometria/métodos , Dendritos/metabolismo , Embrião de Mamíferos , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Processamento de Imagem Assistida por Computador , Camundongos , Cultura Primária de Células , Pseudópodes/metabolismo , Sinapses/metabolismo , Imagem com Lapso de Tempo/métodos
8.
Glia ; 62(2): 272-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24310780

RESUMO

Tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2 have pleiotropic effects in neurodegenerative disorders. For example, while TNFR1 mediates neurodegenerative effects in multiple sclerosis, TNFR2 is protective and contributes to remyelination. The exact mode of TNFR2 action, however, is poorly understood. Here, we show that TNFR2-mediated activation of the PI3K-PKB/Akt pathway in primary astrocytes increased the expression of neuroprotective genes, including that encoding the neurotrophic cytokine leukemia inhibitory factor (LIF). To investigate whether intercellular signaling between TNFR2-stimulated astrocytes and oligodendrocytes plays a role in oligodendrocyte maturation, we established an astrocyte-oligodendrocyte coculture model, composed of primary astrocytes from huTNFR2-transgenic (tgE1335) mice and oligodendrocyte progenitor cells (OPCs) from wild-type mice, capable of differentiating into mature myelinating oligodendrocytes. In this model, selective stimulation of human TNFR2 on astrocytes, promoted differentiation of cocultured OPCs to myelin basic protein-positive mature oligodendrocytes. Addition of LIF neutralizing antibodies inhibited oligodendrocyte differentiation, indicating a crucial role of TNFR2-induced astrocyte derived LIF for oligodendrocyte maturation.


Assuntos
Astrócitos/metabolismo , Fator Inibidor de Leucemia/metabolismo , Oligodendroglia/citologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Hepatology ; 57(2): 625-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22991197

RESUMO

UNLABELLED: As the result of an increasing incidence and a prevalent therapy resistance of hepatocellular carcinoma (HCC), there is a strong need for novel strategies to enhance treatment responses in HCC. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been proposed as a promising anticancer drug because it can selectively induce apoptosis in cancer cells, but not in healthy cells. Nevertheless, most tumor cells show TRAIL resistance, emphasizing the requirement for apoptosis-sensitizing agents and TRAIL molecules with improved tumor specificity. In this study, we employed a recombinant TRAIL molecule, in which three TRAIL protomers were expressed as a single polypeptide chain (scTRAIL), and a novel TRAIL variant, in which scTRAIL was additionally fused to an antibody fragment recognizing epidermal growth factor receptor (EGFR) to improve its HCC-targeting properties. We analyzed the proapoptotic effects of both TRAIL versions in combination with the proteasome inhibitor bortezomib (BZB) in hepatoma cells and primary human hepatocytes as well as in intact explants from HCC and healthy liver tissue. We demonstrate that EGFR-targeted TRAIL in combination with BZB induced significantly higher caspase activation and cell death in hepatoma cells, but not in primary hepatocytes. Importantly, when incubated with fresh liver explants, the combination of EGFR-targeted TRAIL and BZB displayed selective cytotoxicity for HCC, but not for tumor-free liver tissue, which could even be verified in liver explants from the same individuals. Unlike nontargeted TRAIL, EGFR-targeted TRAIL combined with BZB exerted no toxicity in liver tissues from nonalcoholic fatty liver disease patients. CONCLUSION: EGFR-targeted TRAIL reveals increased antitumor activity toward HCC without inducing toxicity to tumor-free liver tissue and might therefore represent a promising novel strategy for HCC treatment.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Borônicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Receptores ErbB/uso terapêutico , Neoplasias Hepáticas/patologia , Pirazinas/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Bortezomib , Carcinoma Hepatocelular/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Terapia de Alvo Molecular
10.
Bioconjug Chem ; 25(5): 879-87, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24766622

RESUMO

The TNF-related apoptosis-inducing ligand (TRAIL) is a powerful inducer of apoptosis in tumor cells; however, clinical studies with recombinant soluble TRAIL were rather disappointing. Here, we developed TRAIL-functionalized liposomes (LipoTRAIL, LT) to mimic membrane-displayed TRAIL for efficient activation of death receptors DR4 and DR5 and enhanced induction of apoptosis, which were combined with an anti-EGFR single-chain Fv fragment (scFv) for targeted delivery to EGFR-positive tumor cells. These immuno-LipoTRAILs (ILTs) bound specifically to EGFR-expressing cells (Colo205) and exhibited increased cytotoxicity compared with that of nontargeted LTs. Compared to that of the soluble TRAIL, the plasma half-life of the functionalized liposomes was strongly extended, and increased antitumor activity of LT and ILT was demonstrated in a xenograft tumor model. Thus, we established a multifunctional liposomal TRAIL formulation (ILT) with improved pharmacokinetic and pharmacodynamic behavior, characterized by targeted delivery and increased induction of apoptosis due to multivalent TRAIL presentation.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Lipossomos/imunologia , Nanopartículas/química , Neoplasias Experimentais/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Animais , Antineoplásicos/química , Antineoplásicos/imunologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipossomos/química , Camundongos , Camundongos Endogâmicos , Camundongos Nus , Modelos Moleculares , Neoplasias Experimentais/patologia , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , Ligante Indutor de Apoptose Relacionado a TNF/química
11.
J Immunol ; 189(6): 3130-9, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22896632

RESUMO

During neuroinflammation, cytokines such as TNF-α and IFN-γ secreted by activated leukocytes and/or CNS resident cells have been shown to alter the phenotype and function of brain endothelial cells (BECs) leading to blood-brain barrier breakdown. In this study, we show that the human BEC line hCMEC/D3 expresses the receptors for TNF-α, TNF receptor 1 and TNF receptor 2, and for IFN-γ. BEC activation with TNF-α alone or in combination with IFN-γ induced endothelial leakage of paracellular tracers. At high cytokine concentrations (10 and 100 ng/ml), this effect was associated with caspase-3/7 activation and apoptotic cell death as evidenced by annexin V staining and DNA fragmentation (TUNEL) assays. In addition, inhibition of JNK and protein kinase C activation at these doses partially prevented activation of caspase-3/7, although only JNK inhibition was partially able to prevent the increase in BEC paracellular permeability induced by cytokines. By contrast, lower cytokine concentrations (1 ng/ml) also led to effector caspase activation, increased paracellular flux, and redistribution of zonula occludens-1 and VE-cadherin but failed to induce apoptosis. Under these conditions, specific caspase-3 and caspase-9, but not caspase-8, inhibitors partially blocked cytokine-induced disruption of tight and adherens junctions and BEC paracellular permeability. Our results suggest that the concentration of cytokines in the CNS endothelial microenvironment determines the extent of caspase-mediated barrier permeability changes, which may be generalized as a result of apoptosis or more subtle as a result of alterations in the organization of junctional complex molecules.


Assuntos
Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/imunologia , Encéfalo/enzimologia , Encéfalo/imunologia , Citocinas/fisiologia , Endotélio Vascular/enzimologia , Endotélio Vascular/imunologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Linhagem Celular , Endotélio Vascular/patologia , Humanos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Interferon gama/metabolismo , Microcirculação/imunologia , Receptores de Interferon/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Frações Subcelulares/enzimologia , Frações Subcelulares/imunologia , Frações Subcelulares/patologia , Receptor de Interferon gama
12.
Mol Ther ; 21(8): 1611-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23732988

RESUMO

Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors.


Assuntos
Fibroblastos/imunologia , Gelatinases/imunologia , Proteínas de Membrana/imunologia , Neoplasias/imunologia , Receptores de Antígenos/imunologia , Serina Endopeptidases/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/biossíntese , Citotoxicidade Imunológica , Modelos Animais de Doenças , Endopeptidases , Fibroblastos/metabolismo , Gelatinases/genética , Gelatinases/metabolismo , Expressão Gênica , Ordem dos Genes , Vetores Genéticos , Humanos , Imunoterapia , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Linfócitos T/metabolismo
13.
Mol Cell Proteomics ; 11(5): 160-70, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22496350

RESUMO

Protein kinase D (PKD) is a cytosolic serine/threonine kinase implicated in regulation of several cellular processes such as response to oxidative stress, directed cell migration, invasion, differentiation, and fission of the vesicles at the trans-Golgi network. Its variety of functions must be mediated by numerous substrates; however, only a couple of PKD substrates have been identified so far. Here we perform stable isotope labeling of amino acids in cell culture-based quantitative phosphoproteomic analysis to detect phosphorylation events dependent on PKD1 activity in human cells. We compare relative phosphorylation levels between constitutively active and kinase dead PKD1 strains of HEK293 cells, both treated with nocodazole, a microtubule-depolymerizing reagent that disrupts the Golgi complex and activates PKD1. We identify 124 phosphorylation sites that are significantly down-regulated upon decrease of PKD1 activity and show that the PKD target motif is significantly enriched among down-regulated phosphorylation events, pointing to the presence of direct PKD1 substrates. We further perform PKD1 target motif analysis, showing that a proline residue at position +1 relative to the phosphorylation site serves as an inhibitory cue for PKD1 activity. Among PKD1-dependent phosphorylation events, we detect predominantly proteins with localization at Golgi membranes and function in protein sorting, among them several sorting nexins and members of the insulin-like growth factor 2 receptor pathway. This study presents the first global detection of PKD1-dependent phosphorylation events and provides a wealth of information for functional follow-up of PKD1 activity upon disruption of the Golgi network in human cells.


Assuntos
Nocodazol/farmacologia , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Canais de Cátion TRPP/metabolismo , Moduladores de Tubulina/farmacologia , Motivos de Aminoácidos , Ativação Enzimática , Técnicas de Silenciamento de Genes , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/enzimologia , Células HEK293 , Humanos , Fosforilação , Canais de Cátion TRPP/genética
14.
Brain Res Bull ; 207: 110885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246200

RESUMO

Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Masculino , Feminino , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Camundongos Endogâmicos C57BL , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Proteínas da Mielina , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Knockout
15.
Biochem Biophys Res Commun ; 440(2): 336-41, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24076392

RESUMO

The neuroprotective role of TNF receptor 2 (TNFR2) has been shown in various studies. However, a direct role of TNFR2 in oligodendrocyte function has not yet been demonstrated. Using primary oligodendrocytes of transgenic mice expressing human TNFR2, we show here that TNFR2 is primarily expressed on oligodendrocyte progenitor cells. Interestingly, preconditioning with a TNFR2 agonist protects these cells from oxidative stress, presumably by increasing the gene expression of distinct anti-apoptotic and detoxifying proteins, thereby providing a potential mechanism for the neuroprotective role of TNFR2 in oligodendrocyte progenitor cells.


Assuntos
Oligodendroglia/efeitos dos fármacos , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Células-Tronco/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Humanos , Camundongos , Camundongos Transgênicos , Oligodendroglia/fisiologia , Estresse Oxidativo , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese
16.
Sci Rep ; 13(1): 10622, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391534

RESUMO

Tumor necrosis factor alpha (TNF-α) and its key role in modulating immune responses has been widely recognized as a therapeutic target for inflammatory and neurodegenerative diseases. Even though inhibition of TNF-α is beneficial for the treatment of certain inflammatory diseases, total neutralization of TNF-α largely failed in the treatment of neurodegenerative diseases. TNF-α exerts distinct functions depending on interaction with its two TNF receptors, whereby TNF receptor 1 (TNFR1) is associated with neuroinflammation and apoptosis and TNF receptor 2 (TNFR2) with neuroprotection and immune regulation. Here, we investigated the effect of administering the TNFR1-specific antagonist Atrosimab, as strategy to block TNFR1 signaling while maintaining TNFR2 signaling unaltered, in an acute mouse model for neurodegeneration. In this model, a NMDA-induced lesion that mimics various hallmarks of neurodegenerative diseases, such as memory loss and cell death, was created in the nucleus basalis magnocellularis and Atrosimab or control protein was administered centrally. We showed that Atrosimab attenuated cognitive impairments and reduced neuroinflammation and neuronal cell death. Our results demonstrate that Atrosimab is effective in ameliorating disease symptoms in an acute neurodegenerative mouse model. Altogether, our study indicates that Atrosimab may be a promising candidate for the development of a therapeutic strategy for the treatment of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Modelos Animais de Doenças , Transtornos da Memória/tratamento farmacológico , Doenças Neuroinflamatórias , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Fator de Necrose Tumoral alfa , Doenças Neurodegenerativas/tratamento farmacológico
17.
Nat Cell Biol ; 7(9): 880-6, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16100512

RESUMO

Protein kinase D (PKD) regulates the fission of vesicles originating from the trans-Golgi network. We show that phosphatidylinositol 4-kinase IIIbeta (PI4KIIIbeta) - a key player in the structure and function of the Golgi complex - is a physiological substrate of PKD. Of the three PKD isoforms, only PKD1 and PKD2 phosphorylated PI4KIIIbeta at a motif that is highly conserved from yeast to humans. PKD-mediated phosphorylation stimulated lipid kinase activity of PI4KIIIbeta and enhanced vesicular stomatitis virus G-protein transport to the plasma membrane. The identification of PI4KIIIbeta as one of the PKD substrates should help to reveal the molecular events that enable transport-carrier formation.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Chlorocebus aethiops , Complexo de Golgi/enzimologia , Proteína Quinase C/metabolismo , Vesículas Transportadoras/enzimologia , Motivos de Aminoácidos/fisiologia , Animais , Transporte Biológico Ativo/fisiologia , Células COS , Membrana Celular/enzimologia , Sequência Conservada/fisiologia , Ativação Enzimática/fisiologia , Evolução Molecular , Complexo de Golgi/metabolismo , Humanos , Metabolismo dos Lipídeos , Glicoproteínas de Membrana/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Proteínas do Envelope Viral/metabolismo
18.
J Cell Biol ; 178(1): 15-22, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17591919

RESUMO

Protein kinase D (PKD) has been identified as a crucial regulator of secretory transport at the trans-Golgi network (TGN). Recruitment and activation of PKD at the TGN is mediated by the lipid diacylglycerol, a pool of which is generated by sphingomyelin synthase from ceramide and phosphatidylcholine. The nonvesicular transfer of ceramide from the endoplasmic reticulum to the Golgi complex is mediated by the lipid transfer protein CERT (ceramide transport). In this study, we identify CERT as a novel in vivo PKD substrate. Phosphorylation on serine 132 by PKD decreases the affinity of CERT toward its lipid target phosphatidylinositol 4-phosphate at Golgi membranes and reduces ceramide transfer activity, identifying PKD as a regulator of lipid homeostasis. We also show that CERT, in turn, is critical for PKD activation and PKD-dependent protein cargo transport to the plasma membrane. Thus, the interdependence of PKD and CERT is key to the maintenance of Golgi membrane integrity and secretory transport.


Assuntos
Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Transporte Biológico , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Glutationa Transferase/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fosforilação , Plasmídeos , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Transfecção
19.
Biochem J ; 440(3): 327-4, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21848513

RESUMO

Skeletal muscle responds to exercise by activation of signalling pathways that co-ordinate gene expression to sustain muscle performance. MEF2 (myocyte enhancer factor 2)-dependent transcriptional activation of MHC (myosin heavy chain) genes promotes the transformation from fast-twitch into slow-twitch fibres, with MEF2 activity being tightly regulated by interaction with class IIa HDACs (histone deacetylases). PKD (protein kinase D) is known to directly phosphorylate skeletal muscle class IIa HDACs, mediating their nuclear export and thus derepression of MEF2. In the present study, we report the generation of transgenic mice with inducible conditional expression of a dominant-negative PKD1kd (kinase-dead PKD1) protein in skeletal muscle to assess the role of PKD in muscle function. In control mice, long-term voluntary running experiments resulted in a switch from type IIb+IId/x to type IIa plantaris muscle fibres as measured by indirect immunofluorescence of MHCs isoforms. In mice expressing PKD1kd, this fibre type switch was significantly impaired. These mice exhibited altered muscle fibre composition and decreased running performance compared with control mice. Our findings thus indicate that PKD activity is essential for exercise-induced MEF2-dependent skeletal muscle remodelling in vivo.


Assuntos
Músculo Esquelético/fisiologia , Canais de Cátion TRPP/metabolismo , Actinas/metabolismo , Substituição de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ensaios Enzimáticos , Indução Enzimática , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Atividade Motora , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Corrida , Canais de Cátion TRPP/genética
20.
Traffic ; 10(7): 858-67, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19416469

RESUMO

The protein kinase D (PKD) family comprises multifunctional serine/threonine-specific protein kinases with three mammalian isoforms: PKD1, PKD2 and PKD3. A prominent PKD function is the regulation of basolateral-targeted transport carrier fission from the trans-Golgi network (TGN). To visualize site-specific PKD activation at this organelle, we designed a molecular reporter consisting of a PKD-specific substrate sequence fused to enhanced green fluorescent protein (EGFP), specifically targeted to the TGN via the p230 GRIP domain. Quantitative analyses using a phosphospecific antibody and ratiometric fluorescence imaging revealed that Golgi-specific phosphorylation of the reporter was strictly dependent on stimulation of endogenous PKD or transient expression of active PKD constructs. Conversely, PKD-specific pharmacological inhibitors and siRNA-mediated PKD knockdown suppressed reporter phosphorylation. Using this reporter we investigated a potential role for PKD in the regulation of Golgi complex morphology. Interestingly, nocodazole-induced Golgi complex break-up and dispersal was associated with local PKD activation as measured by reporter phosphorylation and this was efficiently blocked by expression of a dominant-negative PKD mutant or PKD depletion. Our data thus identify a novel link between PKD activity and the microtubule cytoskeleton, whereby Golgi complex integrity is regulated.


Assuntos
Genes Reporter , Complexo de Golgi , Isoenzimas/metabolismo , Nocodazol/farmacologia , Proteína Quinase C/metabolismo , Moduladores de Tubulina/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Ativação Enzimática , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Dados de Sequência Molecular , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA