Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 68(9): 3001-3011, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30059001

RESUMO

Strain ARgP5T, an actinobacterium isolated from a root nodule present on an Alnus incana subspecies rugosa shrub growing in Quebec City, Canada, was the subject of polyphasic taxonomic studies to clarify its status within the genus Frankia. 16S rRNA gene sequence similarities and ANI values between ARgP5T and type strains of species of the genus Frankiawith validly published names were 98.8 and 82 % or less, respectively. The in silico DNA G+C content was 72.4 mol%. ARgP5T is characterised by the presence of meso-A2pm, galactose, glucose, mannose, rhamnose (trace), ribose and xylose as whole-organism hydrolysates; MK-9(H8) as predominant menaquinone; diphosphatidylglycerol, phosphatidylinositol and phosphatidylglycerol as polar lipids and iso-C16 : 0 and C17 : 1ω8c as major fatty acids. The proteomic results confirmed the distinct position of ARgP5T from its closest neighbours in Frankiacluster 1. ARgP5T was found to be infective on two alder (Alnus glutinosa and Alnusalnobetula subsp. crispa) and on one bayberry (Morella pensylvanica) species and to fix nitrogen in symbiosis and in pure culture. On the basis of phylogenetic (16S rRNA gene sequence), genomic, proteomic and phenotypic results, strain ARgP5T (=DSM 45898=CECT 9033) is considered to represent a novel species within the genus Frankia for which the name Frankia canadensis sp. nov., is proposed.


Assuntos
Alnus/microbiologia , Frankia/classificação , Filogenia , Raízes de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Frankia/genética , Frankia/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Quebeque , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
BMC Microbiol ; 17(1): 128, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545528

RESUMO

BACKGROUND: MALDI-TOF MS is an analytical method that has recently become integral in the identification of microorganisms in clinical laboratories. It relies on databases that majorly employ pattern recognition or fingerprinting. Biomarker based databases have also been developed and there is optimism that these may be superior to pattern recognition based databases. This study compared the performance of ribosomal biomarker based MALDI-TOF MS and conventional methods in the identification of selected bacteria and yeast. METHODS: The study was a cross sectional study identifying clinically relevant bacteria and yeast isolated from varied clinical specimens submitted to a clinical laboratory. The identification of bacteria using conventional Vitek 2™ automated system, serotyping and MALDI-TOF MS was performed as per standard operating procedures. Comparison of sensitivities were then carried out using Pearson Chi-Square test and p-value of <0.05 was considered statistically significant. Secondary outcomes analyzed included the major and minor error rates. RESULTS: Of the 383 isolates MALDI-TOF MS and conventional methods identified 97.6 and 95.7% (p = 0.231) to the genus level and 97.4 and 88.0% (p = 0.000) to the species level respectively. Biomarker based MALDI-TOF MS was significantly superior to Vitek 2™ in the identification of Gram negative bacteria and Gram positive bacteria to the species level. For the Gram positive bacteria, significant difference was observed in the identification of Coagulase negative Staphylococci (p = 0.000) and Enterococcus (p = 0.008). Significant difference was also observed between serotyping and MALDI-TOF MS (p = 0.005) and this was attributed to the lack of identification of Shigella species by MALDI-TOF MS. There was no significant difference observed in the identification of yeast however some species of Candida were unidentified by MALDI-TOF MS. CONCLUSION: Biomarker based MALDI-TOF MS had good performance in a clinical laboratory setting with high sensitivities in the identification of clinically relevant microorganisms.


Assuntos
Bactérias/isolamento & purificação , Biomarcadores/análise , Técnicas de Laboratório Clínico/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Leveduras/isolamento & purificação , Bactérias/classificação , Bactérias/patogenicidade , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Candidíase/diagnóstico , Candidíase/microbiologia , Distribuição de Qui-Quadrado , Técnicas de Laboratório Clínico/instrumentação , Estudos Transversais , Humanos , Sensibilidade e Especificidade , Sorotipagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Leveduras/classificação , Leveduras/patogenicidade
3.
BMC Biotechnol ; 15: 24, 2015 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-25887592

RESUMO

BACKGROUND: Conventionally, human monocyte sub-populations are classified according to surface marker expression into classical (CD14(++)CD16(-)), intermediate (CD14(++)CD16(+)) and non-classical (CD14(+)CD16(++)) lineages. The involvement of non-classical monocytes, also referred to as proinflammatory monocytes, in the pathophysiology of diseases including diabetes mellitus, atherosclerosis or Alzheimer's disease is well recognized. The development of novel high-throughput methods to capture functional states within the different monocyte lineages at the whole cell proteomic level will enable real time monitoring of disease states. RESULTS: We isolated and characterized (pan-) monocytes, mostly composed of classical CD16(-) monocytes, versus autologous CD16(+) subpopulations from the blood of healthy human donors (n = 8) and compared their inflammatory properties in response to lipopolysaccharides and M.tuberculosis antigens by multiplex cytokine profiling. Following resting and in vitro antigenic stimulation, cells were recovered and subjected to whole-cell mass spectrometry analysis. This approach identified the specific presence/absence of m/z peaks and therefore potential biomarkers that can discriminate pan-monocytes from their CD16 counterparts. Furthermore, we found that semi-quantitative data analysis could capture the subtle proteome changes occurring upon microbial stimulation that differentiate resting, from lipopolysaccharides or M. tuberculosis stimulated monocytic samples. CONCLUSIONS: Whole-cell mass spectrometry fingerprinting could efficiently distinguish monocytic sub-populations that arose from a same hematopoietic lineage. We also demonstrate for the first time that mass spectrometry signatures can monitor semi-quantitatively specific activation status in response to exogenous stimulation. As such, this approach stands as a fast and efficient method for the applied immunology field to assess the reactivity of potentially any immune cell types that may sustain health or promote related inflammatory diseases.


Assuntos
Separação Celular/métodos , Monócitos/classificação , Monócitos/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Antígenos de Bactérias/imunologia , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Lipopolissacarídeos/imunologia , Monócitos/química , Monócitos/citologia
4.
J Clin Microbiol ; 53(8): 2632-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063856

RESUMO

In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification.


Assuntos
Bactérias/química , Bactérias/classificação , Técnicas Bacteriológicas/métodos , Ensaio de Proficiência Laboratorial , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Europa (Continente) , Cooperação Internacional
5.
Appl Microbiol Biotechnol ; 99(13): 5547-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25776061

RESUMO

Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS.


Assuntos
Bactérias/química , Bactérias/classificação , Biodiversidade , Proteínas Ribossômicas/análise , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/genética , Proteínas de Bactérias/genética , Biomarcadores/análise , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Int J Syst Evol Microbiol ; 64(Pt 3): 768-774, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24225027

RESUMO

Pectinolytic bacteria have been recently isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms found in a number of European countries and Israel. These Gram-reaction-negative, motile, rods were identified as belonging to the genus Dickeya, previously the Pectobacterium chrysanthemi complex (Erwinia chrysanthemi), on the basis of production of a PCR product with the pelADE primers, 16S rRNA gene sequence analysis, fatty acid methyl esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-methylglucoside. Differential physiological assays used previously to differentiate between strains of E. chrysanthemi, showed that these isolates belonged to biovar 3. Eight of the isolates, seven from potato and one from hyacinth, were analysed together with 21 reference strains representing all currently recognized taxa within the genus Dickeya. The novel isolates formed a distinct genetic clade in multilocus sequence analysis (MLSA) using concatenated sequences of the intergenic spacer (IGS), as well as dnaX, recA, dnaN, fusA, gapA, purA, rplB, rpoS and gyrA. Characterization by whole-cell MALDI-TOF mass spectrometry, pulsed field gel electrophoresis after digestion of whole-genome DNA with rare-cutting restriction enzymes, average nucleotide identity analysis and DNA-DNA hybridization studies, showed that although related to Dickeya dadantii, these isolates represent a novel species within the genus Dickeya, for which the name Dickeya solani sp. nov. (type strain IPO 2222(T) = LMG25993(T) = NCPPB4479(T)) is proposed.


Assuntos
Enterobacteriaceae/classificação , Pectinas/metabolismo , Filogenia , Solanum tuberosum/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Europa (Continente) , Ácidos Graxos/química , Genes Bacterianos , Indóis/metabolismo , Israel , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Genome Med ; 15(1): 89, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904175

RESUMO

BACKGROUND: Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, often caused by uropathogenic Escherichia coli. Multiple bacterial virulence factors or patient characteristics have been linked separately to progressive, more invasive infections. In this study, we aim to identify pathogen- and patient-specific factors that drive the progression to urosepsis by jointly analysing bacterial and host characteristics. METHODS: We analysed 1076 E. coli strains isolated from 825 clinical cases with UTI and/or bacteraemia by whole-genome sequencing (Illumina). Sequence types (STs) were determined via srst2 and capsule loci via fastKaptive. We compared the isolates from urine and blood to confirm clonality. Furthermore, we performed a bacterial genome-wide association study (bGWAS) (pyseer) using bacteraemia as the primary clinical outcome. Clinical data were collected by an electronic patient chart review. We concurrently analysed the association of the most significant bGWAS hit and important patient characteristics with the clinical endpoint bacteraemia using a generalised linear model (GLM). Finally, we designed qPCR primers and probes to detect papGII-positive E. coli strains and prospectively screened E. coli from urine samples (n = 1657) at two healthcare centres. RESULTS: Our patient cohort had a median age of 75.3 years (range: 18.00-103.1) and was predominantly female (574/825, 69.6%). The bacterial phylogroups B2 (60.6%; 500/825) and D (16.6%; 137/825), which are associated with extraintestinal infections, represent the majority of the strains in our collection, many of which encode a polysaccharide capsule (63.4%; 525/825). The most frequently observed STs were ST131 (12.7%; 105/825), ST69 (11.0%; 91/825), and ST73 (10.2%; 84/825). Of interest, in 12.3% (13/106) of cases, the E. coli pairs in urine and blood were only distantly related. In line with previous bGWAS studies, we identified the gene papGII (p-value < 0.001), which encodes the adhesin subunit of the E. coli P-pilus, to be associated with 'bacteraemia' in our bGWAS. In our GLM, correcting for patient characteristics, papGII remained highly significant (odds ratio = 5.27, 95% confidence interval = [3.48, 7.97], p-value < 0.001). An independent cohort of cases which we screened for papGII-carrying E. coli at two healthcare centres further confirmed the increased relative frequency of papGII-positive strains causing invasive infection, compared to papGII-negative strains (p-value = 0.033, chi-squared test). CONCLUSIONS: This study builds on previous work linking papGII with invasive infection by showing that it is a major risk factor for progression from UTI to bacteraemia that has diagnostic potential.


Assuntos
Bacteriemia , Infecções por Escherichia coli , Sepse , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Estudo de Associação Genômica Ampla , Infecções por Escherichia coli/diagnóstico , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia , Fatores de Risco , Fatores de Virulência/genética , Escherichia coli Uropatogênica/genética , Antibacterianos
8.
Clin Microbiol Infect ; 29(2): 190-199, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35623578

RESUMO

OBJECTIVES: Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are the number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it. METHODS: For baseline MSQ assessment, 47 diverse bacterial strains, which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well-defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared. RESULTS: At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [2-25]), reproducibility between technical replicates (range = [55%-86%]), and measurement error (range = [147 parts per million (ppm)-588 ppm]). As a general trend, the spectral quality was improved after the intervention for devices, which yielded low MSQs in the baseline assessment as follows: for four out of five devices with a high measurement error, the measurement precision was improved (p-values <0.001, paired Wilcoxon test); for six out of ten devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values <0.001, paired Wilcoxon test). DISCUSSION: We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this external quality assessment (EQA) requires further study.


Assuntos
Bactérias , Laboratórios , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Reprodutibilidade dos Testes , Fluxo de Trabalho
9.
Parasitology ; 139(2): 248-58, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22008297

RESUMO

Culicoides biting midges are of great importance as vectors of pathogens and elicitors of allergy. As an alternative for the identification of these tiny insects, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated. Protein mass fingerprints were determined for 4-5 field-caught reference (genetically confirmed) individuals of 12 Culicoides species from Switzerland, C. imicola from France, laboratory-reared C. nubeculosus and a non-biting midge. Reproducibility and accuracy of the database was tested in a validation study by analysing 108 mostly field-caught target Culicoides midges and 3 specimens from a non-target species. A reference database of biomarker mass sets containing between 24 and 38 masses for the different species could be established. Automated database-based identification was achieved for 101 of the 108 specimens. The remaining 7 midges required manual full comparison with the reference spectra yielding correct identification for 6 specimens and an ambiguous result for the seventh individual. Specimens of the non-target species did not yield identification. Protein profiling by MALDI-TOF, which is compatible with morphological and genetic identification of specimens, can be used as an alternative, quick and inexpensive tool to accurately identify Culicoides biting midges collected in the field.


Assuntos
Ceratopogonidae/genética , Proteínas de Insetos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Biomarcadores , Ceratopogonidae/classificação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/genética , Filogenia , Reprodutibilidade dos Testes , Especificidade da Espécie
10.
New Microbes New Infect ; 49-50: 101040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385748

RESUMO

The Bacillus cereus-group (B. cereus sensu lato) includes common, usually avirulent species, often considered contaminants of patient samples in routine microbiological diagnostics, as well as the highly virulent B. anthracis. Here we describe 16 isolates from 15 patients, identified as B. cereus-group using a MALDI-TOF MS standard database. Whole genome sequencing (WGS) analysis identified five of the isolates as B. anthracis species not carrying the typical virulence plasmids pXO1 and pXO2, four isolates as B. paranthracis, three as B. cereus sensu stricto, two as B. thuringiensis, one as B. mobilis, and one isolate represents a previously undefined species of Bacillus (B. basilensis sp. nov.). More detailed analysis using alternative MALDI-TOF MS databases, biochemical phenotyping, and diagnostic PCRs, gave further conflicting species results. These cases highlight the difficulties in identifying avirulent B. anthracis within the B. cereus-group using standard methods. WGS and alternative MALDI-TOF MS databases offer more accurate species identification, but so far are not routinely applied. We discuss the diagnostic resolution and discrepancies of various identification methods.

11.
BMC Vet Res ; 7: 6, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21272304

RESUMO

BACKGROUND: Methicillin-resistant coagulase-negative staphylococci (MR-CNS) are of increasing importance to animal and public health. In veterinary medicine and along the meat and milk production line, only limited data were so far available on MR-CNS characteristics. The aim of the present study was to evaluate the prevalence of MR-CNS, to identify the detected staphylococci to species level, and to assess the antibiotic resistance profiles of isolated MR-CNS strains. RESULTS: After two-step enrichment and growth on chromogenic agar, MR-CNS were detected in 48.2% of samples from livestock and chicken carcasses, 46.4% of samples from bulk tank milk and minced meat, and 49.3% of human samples. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), 414 selected MR-CNS strains belonged to seven different species (S. sciuri, 32.6%; S. fleurettii, 25.1%; S. haemolyticus, 17.4%; S. epidermidis, 14.5%, S. lentus, 9.2%; S. warneri, 0.7%; S. cohnii, 0.5%). S. sciuri and S. fleurettii thereby predominated in livestock, BTM and minced meat samples, whereas S. epidermidis and S. haemolyticus predominated in human samples. In addition to beta-lactam resistance, 33-49% of all 414 strains were resistant to certain non-beta-lactam antibiotics (ciproflaxacin, clindamycin, erythromycin, tetracycline). CONCLUSIONS: A high prevalence of MR-CNS was found in livestock production. This is of concern in view of potential spread of mecA to S. aureus (MRSA). Multiresistant CNS strains might become an emerging problem for veterinary medicine. For species identification of MR-CNS isolated from different origins, MALDI-TOF MS proved to be a fast and reliable tool and is suitable for screening of large sample amounts.


Assuntos
Bovinos/microbiologia , Galinhas/microbiologia , Carne/microbiologia , Resistência a Meticilina , Leite/microbiologia , Staphylococcus/isolamento & purificação , Animais , Coagulase/metabolismo , Humanos , Testes de Sensibilidade Microbiana/veterinária , Prevalência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Staphylococcus/enzimologia , Staphylococcus/genética
12.
Front Cell Infect Microbiol ; 11: 646648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796488

RESUMO

Background: An accurate and timely identification of bacterial species is critical in clinical diagnostics. Species identification allows a potential first adaptation of empiric antibiotic treatments before the resistance profile is available. Matrix assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS) is a widely used method for bacterial species identification. However, important challenges in species identification remain. These arise from (i) incomplete databases, (ii) close relatedness of species of interest, and (iii) spectral quality, which is currently vaguely defined. Methods: We selected 47 clinically relevant bacterial isolates from 39 species, which can be challenging to identify by MALDI-TOF MS. We measured these isolates under various analytical conditions on two MALDI-TOF MS systems. First, we identified spectral features, which were associated with correct species identification in three different databases. Considering these features, we then systematically compared spectra produced with three different sample preparation protocols. In addition, we varied quantities of bacterial colony material applied and bacterial colony age. Results: We identified (i) the number of ribosomal marker peaks detected, (ii) the median relative intensity of ribosomal marker peaks, (iii) the sum of the intensity of all detected peaks, (iv) a high measurement precision, and (v) reproducibility of peaks to act as good proxies of spectral quality. We found that using formic acid, measuring bacterial colonies at a young age, and frequently calibrating the MALDI-TOF MS device increase mass spectral quality. We further observed significant differences in spectral quality between different bacterial taxa and optimal measurement conditions vary per taxon. Conclusion: We identified and applied quality measures for MALDI-TOF MS and optimized spectral quality in routine settings. Phylogenetic marker peaks can be reproducibly detected and provide an increased resolution and the ability to distinguish between challenging species such as those within the Enterobacter cloacae complex, Burkholderia cepacia complex, or viridans streptococci.


Assuntos
Bactérias , Manejo de Espécimes , Filogenia , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Genome Med ; 13(1): 150, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517886

RESUMO

BACKGROUND: Klebsiella spp. are opportunistic pathogens which can cause severe infections, are often multi-drug resistant and are a common cause of hospital-acquired infections. Multiple new Klebsiella species have recently been described, yet their clinical impact and antibiotic resistance profiles are largely unknown. We aimed to explore Klebsiella group- and species-specific clinical impact, antimicrobial resistance (AMR) and virulence. METHODS: We analysed whole-genome sequence data of a diverse selection of Klebsiella spp. isolates and identified resistance and virulence factors. Using the genomes of 3594 Klebsiella isolates, we predicted the masses of 56 ribosomal subunit proteins and identified species-specific marker masses. We then re-analysed over 22,000 Matrix-Assisted Laser Desorption Ionization - Time Of Flight (MALDI-TOF) mass spectra routinely acquired at eight healthcare institutions in four countries looking for these species-specific markers. Analyses of clinical and microbiological endpoints from a subset of 957 patients with infections from Klebsiella species were performed using generalized linear mixed-effects models. RESULTS: Our comparative genomic analysis shows group- and species-specific trends in accessory genome composition. With the identified species-specific marker masses, eight Klebsiella species can be distinguished using MALDI-TOF MS. We identified K. pneumoniae (71.2%; n = 12,523), K. quasipneumoniae (3.3%; n = 575), K. variicola (9.8%; n = 1717), "K. quasivariicola" (0.3%; n = 52), K. oxytoca (8.2%; n = 1445), K. michiganensis (4.8%; n = 836), K. grimontii (2.4%; n = 425) and K. huaxensis (0.1%; n = 12). Isolates belonging to the K. oxytoca group, which includes the species K. oxytoca, K. michiganensis and K. grimontii, were less often resistant to 4th-generation cephalosporins than isolates of the K. pneumoniae group, which includes the species K. pneumoniae, K. quasipneumoniae, K. variicola and "K. quasivariicola" (odds ratio = 0.17, p < 0.001, 95% confidence interval [0.09,0.28]). Within the K. pneumoniae group, isolates identified as K. pneumoniae were more often resistant to 4th-generation cephalosporins than K. variicola isolates (odds ratio = 2.61, p = 0.003, 95% confidence interval [1.38,5.06]). K. oxytoca group isolates were found to be more likely associated with invasive infection to primary sterile sites than K. pneumoniae group isolates (odds ratio = 2.39, p = 0.0044, 95% confidence interval [1.05,5.53]). CONCLUSIONS: Currently misdiagnosed Klebsiella spp. can be distinguished using a ribosomal marker-based approach for MALDI-TOF MS. Klebsiella groups and species differed in AMR profiles, and in their association with invasive infection, highlighting the importance for species identification to enable effective treatment options.


Assuntos
Infecções por Klebsiella/diagnóstico , Klebsiella oxytoca/genética , Klebsiella oxytoca/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sequenciamento Completo do Genoma , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Genoma Bacteriano , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella oxytoca/efeitos dos fármacos , Klebsiella pneumoniae/genética , Masculino , Estudos Retrospectivos , Especificidade da Espécie , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência
14.
J Clin Microbiol ; 48(8): 2846-51, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20554814

RESUMO

Cronobacter spp. are Gram-negative opportunistic food-borne pathogens and are known as rare but important causes of life-threatening neonatal infections. Rapid and reliable identification of Cronobacter species and their differentiation from phenotypically similar, nonpathogenic Enterobacter turicensis, Enterobacter helveticus, and Enterobacter pulveris have become increasingly important. We evaluated here the application of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid genus and species identification of the six Cronobacter species recognized so far. To this end, we developed a reference MS database library that includes 54 Cronobacter target strains as well as 17 nontarget strains. The strains provided reproducible and unique mass spectra profiles covering a wide molecular mass range (2,000 to 30,000 Da). Genus- and species-specific biomarker protein mass patterns were determined. The defined biomarker mass patterns (Spectral Archive and Microbial Identification System [SARAMIS] SuperSpectrum) were validated using 36 strains from various Cronobacter species as well as eight nontarget strains. For all strains the mass spectrometry-based identification scheme yielded identical results as with a PCR-based identification system. All strains were correctly identified, and no nontarget strain was misidentified as Cronobacter. Our study demonstrates that MALDI-TOF MS is a reliable and powerful tool for the rapid identification of Cronobacter strains to the genus and species level.


Assuntos
Técnicas Bacteriológicas/métodos , Enterobacteriaceae/química , Enterobacteriaceae/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Infecções por Enterobacteriaceae/diagnóstico , Humanos , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
16.
Sci Rep ; 10(1): 8788, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472028

RESUMO

Streptococcus agalactiae (Group B Streptococcus, GBS), is a frequent human colonizer and a leading cause of neonatal meningitis as well as an emerging pathogen in non-pregnant adults. GBS possesses a broad animal host spectrum, and recent studies proved atypical GBS genotypes can cause human invasive diseases through animal sources as food-borne zoonotic infections. We applied a MALDI-TOF MS typing method, based on molecular weight variations of predefined 28 ribosomal subunit proteins (rsp) to classify GBS strains of varying serotypes into major phylogenetic lineages. A total of 249 GBS isolates of representative and varying capsular serotypes from patients and animal food sources (fish and pig) collected during 2016-2018 in Hong Kong were analysed. Over 84% (143/171) noninvasive carriage GBS strains from patients were readily typed into 5 globally dominant rsp-profiles. Among GBS strains from food animals, over 90% (57/63) of fish and 13% (2/15) of pig GBS matched with existing rsp-profiles, while the remainder were classified into two novel rsp-profiles and we failed to assign a fish strain into any cluster. MALDI-TOF MS allowed for high-throughput screening and simultaneous detection of novel, so far not well described GBS genotypes. The method shown here is rapid, simple, readily transferable and adapted for use in a diagnostic microbiology laboratory with potential for the surveillance of emerging GBS genotypes with zoonotic potential.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Peixes/microbiologia , Subunidades Ribossômicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/classificação , Suínos/microbiologia , Animais , Humanos , Peso Molecular , Filogenia , Sorotipagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/metabolismo , Zoonoses/microbiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-31700617

RESUMO

Background: A number of episodes of nosocomial Agrobacterium spp. bacteremia (two cases per year) were observed at Bern University Hospital, Switzerland, from 2015 to 2017. This triggered an outbreak investigation. Methods: Cases of Agrobacterium spp. bacteremias that occurred between August 2011 and February 2017 were investigated employing line lists, environmental sampling, rapid protein- (MALDI-TOF MS), and genome-based typing (pulsed field gel electrophoresis and whole genome sequencing) of the clinical isolates. Results: We describe a total of eight bacteremia episodes due to A. radiobacter (n = 2), Agrobacterium genomovar G3 (n = 5) and A. pusense (n = 1). Two tight clusters were observed by WGS typing, representing the two A. radiobacter isolates (cluster I, isolated in 2015) and four of the Agrobacterium genomovar G3 isolates (cluster II, isolated in 2016 and 2017), suggesting two different point sources. The epidemiological investigations revealed two computer tomography (CT) rooms as common patient locations, which correlated with the two outbreak clusters. MALDI-TOF MS permitted faster evaluation of strain relatedness than DNA-based methods. High resolution WGS-based typing confirmed the MALDI-TOF MS clustering. Conclusions: We report clinical and epidemiological characteristics of two outbreak clusters with Agrobacterium. spp. bacteremia likely acquired during CT contrast medium injection and highlight the use of MALDI-TOF MS as a rapid tool to assess relatedness of rare gram-negative pathogens in an outbreak investigation.


Assuntos
Agrobacterium/classificação , Agrobacterium/genética , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Surtos de Doenças , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Eletroforese em Gel de Campo Pulsado , Feminino , Genoma Bacteriano , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Centros de Atenção Terciária , Sequenciamento Completo do Genoma , Adulto Jovem
18.
J Microbiol Methods ; 164: 105685, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31400360

RESUMO

In our current study we were identifying 26 bacterial isolates using a SCIEX 5800 TOF/TOF MALDI instrument and an external database. The results were compared with the results of a Vitek® MS system and in case of discrepancies at the species level 16s rRNA sequencing was performed for further verification.


Assuntos
Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/genética , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/instrumentação , DNA Bacteriano/genética , Bases de Dados Factuais , RNA Ribossômico 16S/genética
19.
Front Microbiol ; 10: 471, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915057

RESUMO

Background: A ribosomal subunit protein (rsp)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was developed for fast subspecies-level typing of Streptococcus agalactiae (Group B Streptococcus, GBS), a major cause of neonatal sepsis and meningitis. Methods: A total of 796 GBS whole genome sequences, covering the genetic diversity of the global GBS population, were used to in silico predict molecular mass variability of 28 rsp and to identify unique rsp mass combinations, termed "rsp-profiles". The in silico established GBS typing scheme was validated by MALDI-TOF MS analysis of GBS isolates at two independent research sites in Europe and South East Asia. Results: We identified in silico 62 rsp-profiles, with the majority (>80%) of the 796 GBS isolates displaying one of the six rsp-profiles 1-6. These dominant rsp-profiles classify GBS strains in high concordance with the core-genome based phylogenetic clustering. Validation of our approach by in-house MALDI-TOF MS analysis of 248 GBS isolates and external analysis of 8 GBS isolates showed that across different laboratories and MALDI-TOF MS platforms, the 28 rsp were detected reliably in the mass spectra, allowing assignment of clinical isolates to rsp-profiles at high sensitivity (99%) and specificity (97%). Our approach distinguishes the major phylogenetic GBS genotypes, identifies hyper-virulent strains, predicts the probable capsular serotype and surface protein variants and distinguishes between GBS genotypes of human and animal origin. Conclusion: We combine the information depth of whole genome sequences with the highly cost efficient, rapid and robust MALDI-TOF MS approach facilitating high-throughput, inter-laboratory, large-scale GBS epidemiological and clinical studies based on pre-defined rsp-profiles.

20.
Parasit Vectors ; 12(1): 61, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683145

RESUMO

BACKGROUND: Culicoides (Diptera: Ceratopogonidae) is a genus of small biting midges (also known as "no-see ums") that currently includes 1368 described species. They are proven or suspected vectors for important pathogens affecting animals such as bluetongue virus (BTV) and Schmallenberg virus (SBV). Currently little information is available on the species of Culicoides present in Serbia. Thus, the aim of this study was to examine species diversity, host preference and the presence of BTV and SBV RNA in Culicoides from the Stara Planina Nature Park in south-eastern Serbia. RESULTS: In total 19,887 individual Culicoides were collected during three nights of trapping at two farm sites and pooled into six groups (Obsoletus group, Pulicaris group, "Others" group and further each group according to the blood-feeding status to freshly engorged and non-engorged). Species identification was done on subsamples of 592 individual Culicoides specimens by morphological and molecular methods (MALDI-TOF mass spectrometry and PCR/sequencing). At least 22 Culicoides species were detected. Four animal species (cow, sheep, goat and common blackbird) as well as humans were identified as hosts of Culicoides biting midges. The screening of 8291 Culicoides specimens in 99 pools for the presence of BTV and SBV RNA by reverse-transcription quantitative PCR were negative. CONCLUSIONS: The biodiversity of Culicoides species in the natural reserve Stara Planina was high with at least 22 species present. The presence of C. imicola Kieffer was not recorded in this area. Culicoides showed opportunistic feeding behaviour as determined by host preference. The absence of SBV and BTV viral RNA correlates with the absence of clinical disease in the field during the time of sampling. These data are the direct outcome of a training programme within the Institutional Partnership Project "AMSAR: Arbovirus monitoring, research and surveillance-capacity building on mosquitoes and biting midges" funded by the programme SCOPES of the Swiss National Science Foundation.


Assuntos
Arbovírus/isolamento & purificação , Ceratopogonidae/classificação , Especificidade de Hospedeiro , Insetos Vetores/classificação , Animais , Arbovírus/genética , Ceratopogonidae/fisiologia , Ceratopogonidae/virologia , Comportamento Alimentar , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Reação em Cadeia da Polimerase em Tempo Real , Sérvia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA