Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(8): 2481-2487, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373326

RESUMO

Comprehending the interaction between geometry and magnetism in three-dimensional (3D) nanostructures is important to understand the fundamental physics of domain wall (DW) formation and pinning. Here, we use focused-electron-beam-induced deposition to fabricate magnetic nanohelices with increasing helical curvature with height. Using electron tomography and Lorentz transmission electron microscopy, we reconstruct the 3D structure and magnetization of the nanohelices. The surface curvature, helical curvature, and torsion of the nanohelices are then quantified from the tomographic reconstructions. Furthermore, by using the experimental 3D reconstructions as inputs for micromagnetic simulations, we can reveal the influence of surface and helical curvature on the magnetic reversal mechanism. Hence, we can directly correlate the magnetic behavior of a 3D nanohelix to its experimental structure. These results demonstrate how the control of geometry in nanohelices can be utilized in the stabilization of DWs and control of the response of the nanostructure to applied magnetic fields.

2.
Nano Lett ; 24(5): 1531-1538, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286029

RESUMO

Two-dimensional (2D) van der Waals magnets comprise rich physics that can be exploited for spintronic applications. We investigate the interplay between spin-phonon coupling and spin textures in a 2D van der Waals magnet by combining magneto-Raman spectroscopy with cryogenic Lorentz transmission electron microscopy. We find that when stable skyrmion bubbles are formed in the 2D magnet, a field-dependent Raman shift can be observed, and this shift is absent for the 2D magnet prepared in its ferromagnetic state. Correlating these observations with numerical simulations that take into account field-dependent magnetic textures and spin--phonon coupling in the 2D magnet, we associate the Raman shift to field-induced modulations of the skyrmion bubbles and derive the existence of inhomogeneity in the skyrmion textures over the film thickness.

3.
Phys Rev Lett ; 132(22): 226201, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877909

RESUMO

Electrical control of charge density waves has been of immense interest, as the strong underlying electron-lattice interactions potentially open new, efficient pathways for manipulating their ordering and, consequently, their electronic properties. However, the transition mechanisms are often unclear as electric field, current, carrier injection, heat, and strain can all contribute and play varying roles across length scales and timescales. Here, we provide insight on how electrical stimulation melts the room temperature charge density wave order in 1T-TaS_{2} by visualizing the atomic and mesoscopic structural dynamics from quasi-static to nanosecond pulsed melting. Using a newly developed ultrafast electron microscope setup with electrical stimulation, we reveal the order and strain dynamics during voltage pulses as short as 20 ns. The order parameter dynamics across a range of pulse amplitudes and durations support a thermally driven mechanism even for fields as high as 19 kV cm^{-1}. In addition, time-resolved imaging reveals a heterogeneous, mesoscopic strain response across the flake, including MHz-scale acoustic resonances that emerge during sufficiently short pulsed excitation which may modulate the order. These results suggest that metallic charge density wave phases like studied here may be more robust to electronic switching pathways than insulating ones, motivating further investigations at higher fields and currents in this and other related systems.

4.
Nature ; 623(7988): 702-703, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993577
5.
Nano Lett ; 22(19): 7804-7810, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36129969

RESUMO

The physics of phase transitions in two-dimensional (2D) systems underpins research in diverse fields including statistical mechanics, nanomagnetism, and soft condensed matter. However, many aspects of 2D phase transitions are still not well understood, including the effects of interparticle potential, polydispersity, and particle shape. Magnetic skyrmions are chiral spin-structure quasi-particles that form two-dimensional lattices. Here, we show, by real-space imaging using in situ cryo-Lorentz transmission electron microscopy coupled with machine learning image analysis, the ordering behavior of Néel skyrmion lattices in van der Waals Fe3GeTe2. We demonstrate a distinct change in the skyrmion size distribution during field-cooling, which leads to a loss of lattice order and an evolution of the skyrmion liquid phase. Remarkably, the lattice order is restored during field heating and demonstrates a thermal hysteresis. This behavior is explained by the skyrmion energy landscape and demonstrates the potential to control the lattice order in 2D phase transitions.

6.
Nat Mater ; 19(8): 887-893, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32284599

RESUMO

A number of grain boundary phenomena in ionic materials, in particular, anomalous (either depressed or enhanced) charge transport, have been attributed to space charge effects. Developing effective strategies to manipulate transport behaviour requires deep knowledge of the origins of the interfacial charge, as well as its variability within a polycrystalline sample with millions of unique grain boundaries. Electron holography is a powerful technique uniquely suited for studying the electric potential profile at individual grain boundaries, whereas atom-probe tomography provides access to the chemical identify of essentially every atom at individual grain boundaries. Using these two techniques, we show here that the space charge potential at grain boundaries in lightly doped, high-purity ceria can vary by almost an order of magnitude. We further find that trace impurities (<25 ppm), rather than inherent thermodynamic factors, may be the ultimate source of grain boundary charge. These insights suggest chemical tunability of grain boundary transport properties.

7.
Nano Lett ; 18(11): 6989-6994, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30343574

RESUMO

Topological concepts play an important role in, and provide unique insights into, many physical phenomena. In particular topological defects have become an active area of research due to their relevance to diverse systems including condensed matter and the early universe. These defects arise in systems during phase transitions or symmetry-breaking operations that lead to a specific configuration of the order parameter that is stable against external perturbations. In this work, we experimentally show that excitations or defects carrying magnetic charge in artificial spin ices introduce a topological defect in incident coherent electron waves. This results in the formation of a localized electron vortex beam carrying orbital angular momentum that is directly correlated with the magnetic charge. This work provides unique insight into the interaction of electrons with magnetically charged excitations and the effect on their topology thereby opening new possibilities to explore exotic scattering and quantum effects in nanoscale condensed-matter systems.

8.
J Synchrotron Radiat ; 25(Pt 4): 1144-1152, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979176

RESUMO

The development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100-300 nm in thickness to be probed with resolutions of 20-40 nm. Here a new iterative tomographic reconstruction method to extract the three-dimensional magnetization configuration from tomographic projections is presented. The vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a set of linear equations in an iterative manner. The application of this method is illustrated with two examples (magnetic nano-disc and micro-square heterostructure) along with comparison of error in reconstructions, and convergence of the algorithm.

15.
J Synchrotron Radiat ; 24(Pt 2): 469-475, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28244442

RESUMO

This paper presents an algorithm to calibrate the center-of-rotation for X-ray tomography by using a machine learning approach, the Convolutional Neural Network (CNN). The algorithm shows excellent accuracy from the evaluation of synthetic data with various noise ratios. It is further validated with experimental data of four different shale samples measured at the Advanced Photon Source and at the Swiss Light Source. The results are as good as those determined by visual inspection and show better robustness than conventional methods. CNN has also great potential for reducing or removing other artifacts caused by instrument instability, detector non-linearity, etc. An open-source toolbox, which integrates the CNN methods described in this paper, is freely available through GitHub at tomography/xlearn and can be easily integrated into existing computational pipelines available at various synchrotron facilities. Source code, documentation and information on how to contribute are also provided.

16.
Nano Lett ; 16(7): 4141-8, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27186990

RESUMO

Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. Here we show the formation of nanoscale skyrmions in a nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. The formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.

17.
Nano Lett ; 14(2): 759-64, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24444002

RESUMO

In this work, we report on the direct visualization of magnetic structure in sculpted three-dimensional cobalt (Co) nanospirals with a wire diameter of 20 nm and outer spiral diameter of 115 nm and on the magnetic interactions between the nanospirals, using aberration-corrected Lorentz transmission electron microscopy. By analyzing the magnetic domains in three dimensions at the nanoscale, we show that magnetic domain formation in the Co nanospirals is a result of the shape anisotropy dominating over the magnetocrystalline anisotropy of the system. We also show that the strong dipolar magnetic interactions between adjacent closely packed nanospirals leads to their magnetization directions adopting alternating directions to minimize the total magnetostatic energy of the system. Deviations from such magnetization structure can only be explained by analyzing the complex three-dimensional structure of the nanospirals. These nanostructures possess an inherent chirality due to their growth conditions and are of significant importance as nanoscale building blocks in magneto-optical devices.

18.
ACS Nano ; 18(5): 4216-4228, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38262067

RESUMO

Fe5-xGeTe2 is a promising two-dimensional (2D) van der Waals (vdW) magnet for practical applications, given its magnetic properties. These include Curie temperatures above room temperature, and topological spin textures─TST (both merons and skyrmions), responsible for a pronounced anomalous Hall effect (AHE) and its topological counterpart (THE), which can be harvested for spintronics. Here, we show that both the AHE and THE can be amplified considerably by just adjusting the thickness of exfoliated Fe5-xGeTe2, with THE becoming observable even in zero magnetic field due to a field-induced unbalance in topological charges. Using a complementary suite of techniques, including electronic transport, Lorentz transmission electron microscopy, and micromagnetic simulations, we reveal the emergence of substantial coercive fields upon exfoliation, which are absent in the bulk, implying thickness-dependent magnetic interactions that affect the TST. We detected a "magic" thickness t ≈ 30 nm where the formation of TST is maximized, inducing large magnitudes for the topological charge density (∼6.45 × 1020 cm-2), and the concomitant anomalous (ρxyA,max ≃22.6 µΩ cm) and topological (ρxyu,T 1≃5 µΩ cm) Hall resistivities at T ≈ 120 K. These values for ρxyA,max and ρxyu,T are higher than those found in magnetic topological insulators and, so far, the largest reported for 2D magnets. The hitherto unobserved THE under zero magnetic field could provide a platform for the writing and electrical detection of TST aiming at energy-efficient devices based on vdW ferromagnets.

19.
Adv Mater ; 36(24): e2311949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38306214

RESUMO

Generation and control of topological spin textures constitutes one of the most exciting challenges of modern spintronics given their potential applications in information storage technologies. Of particular interest are magnetic insulators, which due to low damping, absence of Joule heating and reduced dissipation can provide energy-efficient spin-textures platform. Here, it is demonstrated that the interplay between sample thickness, external magnetic fields, and optical excitations can generate a prolific paramount of spin textures, and their coexistence in insulating CrBr3 van der Waals (vdW) ferromagnets. Using high-resolution magnetic force microscopy and large-scale micromagnetic simulation methods, the existence of a large region in T-B phase diagram is demonstrated where different stripe domains, skyrmion crystals, and magnetic domains exist and can be intrinsically selected or transformed to each-other via a phase-switch mechanism. Lorentz transmission electron microscopy unveils the mixed chirality of the magnetic textures that are of Bloch-type at given conditions but can be further manipulated into Néel-type or hybrid-type via thickness-engineering. The topological phase transformation between the different magnetic objects can be further inspected by standard photoluminescence optical probes resolved by circular polarization indicative of an existence of exciton-skyrmion coupling mechanism. The findings identify vdW magnetic insulators as a promising framework of materials for the manipulation and generation of highly ordered skyrmion lattices relevant for device integration at the atomic level.

20.
Adv Mater ; 36(24): e2311591, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38426690

RESUMO

2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2) and silicon nitride (SiNx). Here, a seeded growth technique for crystallizing CrTe2 films on amorphous SiNx/Si and SiO2/Si substrates with a low thermal budget is presented. This fabrication process optimizes large-scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo-oersted, attributed to weak intergranular exchange coupling. Field-driven Néel-type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2 devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single-crystalline counterparts. Current-assisted magnetization switching, enabled by a substantial spin-orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107 ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large-scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA