Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(7): 1217-1230, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077760

RESUMO

Genome-wide association studies (GWASs) require accurate cohort phenotyping, but expert labeling can be costly, time intensive, and variable. Here, we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color fundus photographs. We used the model to predict vertical cup-to-disc ratio (VCDR), a diagnostic parameter and cardinal endophenotype for glaucoma, in 65,680 Europeans in the UK Biobank (UKB). A GWAS of ML-based VCDR identified 299 independent genome-wide significant (GWS; p ≤ 5 × 10-8) hits in 156 loci. The ML-based GWAS replicated 62 of 65 GWS loci from a recent VCDR GWAS in the UKB for which two ophthalmologists manually labeled images for 67,040 Europeans. The ML-based GWAS also identified 93 novel loci, significantly expanding our understanding of the genetic etiologies of glaucoma and VCDR. Pathway analyses support the biological significance of the novel hits to VCDR: select loci near genes involved in neuronal and synaptic biology or harboring variants are known to cause severe Mendelian ophthalmic disease. Finally, the ML-based GWAS results significantly improve polygenic prediction of VCDR and primary open-angle glaucoma in the independent EPIC-Norfolk cohort.


Assuntos
Aprendizado de Máquina , Disco Óptico/anatomia & histologia , Conjuntos de Dados como Assunto , Angiofluoresceinografia , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/diagnóstico por imagem , Humanos , Modelos Anatômicos , Disco Óptico/diagnóstico por imagem , Fenótipo , Medição de Risco
2.
Ophthalmology ; 126(12): 1627-1639, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31561879

RESUMO

PURPOSE: To develop and validate a deep learning (DL) algorithm that predicts referable glaucomatous optic neuropathy (GON) and optic nerve head (ONH) features from color fundus images, to determine the relative importance of these features in referral decisions by glaucoma specialists (GSs) and the algorithm, and to compare the performance of the algorithm with eye care providers. DESIGN: Development and validation of an algorithm. PARTICIPANTS: Fundus images from screening programs, studies, and a glaucoma clinic. METHODS: A DL algorithm was trained using a retrospective dataset of 86 618 images, assessed for glaucomatous ONH features and referable GON (defined as ONH appearance worrisome enough to justify referral for comprehensive examination) by 43 graders. The algorithm was validated using 3 datasets: dataset A (1205 images, 1 image/patient; 18.1% referable), images adjudicated by panels of GSs; dataset B (9642 images, 1 image/patient; 9.2% referable), images from a diabetic teleretinal screening program; and dataset C (346 images, 1 image/patient; 81.7% referable), images from a glaucoma clinic. MAIN OUTCOME MEASURES: The algorithm was evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity for referable GON and glaucomatous ONH features. RESULTS: The algorithm's AUC for referable GON was 0.945 (95% confidence interval [CI], 0.929-0.960) in dataset A, 0.855 (95% CI, 0.841-0.870) in dataset B, and 0.881 (95% CI, 0.838-0.918) in dataset C. Algorithm AUCs ranged between 0.661 and 0.973 for glaucomatous ONH features. The algorithm showed significantly higher sensitivity than 7 of 10 graders not involved in determining the reference standard, including 2 of 3 GSs, and showed higher specificity than 3 graders (including 1 GS), while remaining comparable to others. For both GSs and the algorithm, the most crucial features related to referable GON were: presence of vertical cup-to-disc ratio of 0.7 or more, neuroretinal rim notching, retinal nerve fiber layer defect, and bared circumlinear vessels. CONCLUSIONS: A DL algorithm trained on fundus images alone can detect referable GON with higher sensitivity than and comparable specificity to eye care providers. The algorithm maintained good performance on an independent dataset with diagnoses based on a full glaucoma workup.


Assuntos
Aprendizado Profundo , Glaucoma de Ângulo Aberto/diagnóstico , Oftalmologistas , Disco Óptico/patologia , Doenças do Nervo Óptico/diagnóstico , Especialização , Idoso , Área Sob a Curva , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Curva ROC , Encaminhamento e Consulta , Células Ganglionares da Retina/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade
4.
NPJ Digit Med ; 2: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304372

RESUMO

Deep learning algorithms have been used to detect diabetic retinopathy (DR) with specialist-level accuracy. This study aims to validate one such algorithm on a large-scale clinical population, and compare the algorithm performance with that of human graders. A total of 25,326 gradable retinal images of patients with diabetes from the community-based, nationwide screening program of DR in Thailand were analyzed for DR severity and referable diabetic macular edema (DME). Grades adjudicated by a panel of international retinal specialists served as the reference standard. Relative to human graders, for detecting referable DR (moderate NPDR or worse), the deep learning algorithm had significantly higher sensitivity (0.97 vs. 0.74, p < 0.001), and a slightly lower specificity (0.96 vs. 0.98, p < 0.001). Higher sensitivity of the algorithm was also observed for each of the categories of severe or worse NPDR, PDR, and DME (p < 0.001 for all comparisons). The quadratic-weighted kappa for determination of DR severity levels by the algorithm and human graders was 0.85 and 0.78 respectively (p < 0.001 for the difference). Across different severity levels of DR for determining referable disease, deep learning significantly reduced the false negative rate (by 23%) at the cost of slightly higher false positive rates (2%). Deep learning algorithms may serve as a valuable tool for DR screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA