Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Oncol Rep ; 25(9): 1057-1069, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37470973

RESUMO

PURPOSE OF REVIEW: The neuro-oncology team faces a unique challenge when assessing treatment response in patients diagnosed with glioblastoma. Magnetic resonance imaging (MRI) remains the standard imaging modality for measuring therapeutic response in both clinical practice and clinical trials. However, even for the neuroradiologist, MRI interpretations are not straightforward because of tumor heterogeneity, as evidenced by varying degrees of enhancement, infiltrating tumor patterns, cellular densities, and vasogenic edema. The situation is even more perplexing following therapy since treatment-related changes can mimic viable tumor. Additionally, antiangiogenic therapies can dramatically decrease contrast enhancement giving the false impression of decreasing tumor burden. Over the past few decades, several approaches have emerged to augment and improve visual interpretation of glioblastoma response to therapeutics. Herein, we summarize the state of the art for evaluating the response of glioblastoma to standard therapies and investigational agents as well as challenges and future directions for assessing treatment response in neuro-oncology. RECENT FINDINGS: Monitoring glioblastoma responses to standard therapy and novel agents has been fraught with many challenges and limitations over the past decade. Excitingly, new promising methods are emerging to help address these challenges. Recently, the Response Assessment in Neuro-Oncology (RANO) working group proposed an updated response criteria (RANO 2.0) for the evaluation of all grades of glial tumors regardless of IDH status or therapies being evaluated. In addition, advanced neuroimaging techniques, such as histogram analysis, parametric response maps, morphometric segmentation, radio pharmacodynamics approaches, and the integrating of amino acid radiotracers in the tumor evaluation algorithm may help resolve equivocal lesion interpretations without operative intervention. Moreover, the introduction of other techniques, such as liquid biopsy and artificial intelligence could complement conventional visual assessment of glioblastoma response to therapies. Neuro-oncology has evolved over the past decade and has achieved significant milestones, including the establishment of new standards of care, emerging therapeutic options, and novel clinical, translational, and basic research. More recently, the integration of histopathology with molecular features for tumor classification has marked an important paradigm shift in brain tumor diagnosis. In a similar manner, treatment response monitoring in neuro-oncology has made considerable progress. While most techniques are still in their inception, there is an emerging body of evidence for clinical application. Further research will be critically important for the development of impactful breakthroughs in this area of the field.

2.
J Neurooncol ; 159(3): 499-508, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35857249

RESUMO

BACKGROUND AND OBJECTIVE: Differentiating neoplastic and non-neoplastic brain lesions is essential to make management recommendations and convey prognosis, but the distinction between brain tumors and their mimics in practice may prove challenging. The aim of this study is to provide the incidence of brain tumor mimics in the neuro-oncology setting and describe this patient subset. METHODS: Retrospective study of adult patients referred to the Division of Neuro-oncology for a presumed diagnosis of brain tumor from January 1, 2005 through December 31, 2017, who later satisfied the diagnosis of a non-neoplastic entity based on neuroimaging, clinical course, and/or histopathology evaluation. We classified tumor mimic entities according to clinical, radiologic, and laboratory characteristics that correlated with the diagnosis. RESULTS: The incidence of brain tumor mimics was 3.4% (132/3897). The etiologies of the non-neoplastic entities were vascular (35%), inflammatory non-demyelinating (26%), demyelinating (15%), cysts (10%), infectious (9%), and miscellaneous (5%). In our study, 38% of patients underwent biopsy to determine diagnosis, but in 26%, the biopsy was inconclusive. DISCUSSION: Brain tumor mimics represent a small but important subset of the neuro-oncology referrals. Vascular, inflammatory, and demyelinating etiologies represent two-thirds of cases. Recognizing the clinical, radiologic and laboratory characteristics of such entities may improve resource utilization and prevent unnecessary as well as potentially harmful diagnostic and therapeutic interventions.


Assuntos
Neoplasias Encefálicas , Cistos , Adulto , Biópsia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Humanos , Estudos Retrospectivos
3.
Neurol Clin ; 36(3): 449-466, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30072065

RESUMO

Patients with brain tumor encounter a wide spectrum of tumor and treatment-related complications during their disease course. Tumors may serve as seizure substrates, are associated with a hypercoagulable state that results in thromboembolic complications, and may influence mood and cognition. Antitumor and supportive therapies may also have deleterious effects. Herein, we discuss major aspects of supportive care for patients with brain tumors, with attention to benefit and complications derived from the management of seizures, brain edema, venous thromboembolism, fatigue, mood alterations, and cognitive dysfunction.


Assuntos
Neoplasias Encefálicas/complicações , Edema Encefálico/etiologia , Edema Encefálico/terapia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/terapia , Humanos , Convulsões/etiologia , Convulsões/terapia , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/terapia
4.
CNS Oncol ; 6(4): 275-280, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29034739

RESUMO

Intramedullary spinal cord metastasis is an increasingly common diagnosis in patients with cancer largely owing to new imaging techniques and the increase lifespan of patients with malignant tumors. The diagnosis confers significant morbidity and a poor prognosis. Mainstay palliative treatment options include corticosteroids, fractionated radiotherapy and surgery in select cases. In the modern era of immunotherapy for the treatment of several tumor types, the efficacy of these agents against parenchymal CNS tumors remains unanswered. Here, we report a case of regression of an intramedullary spinal cord metastasis with a checkpoint inhibitor.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Medula Espinal/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/secundário , Adenocarcinoma de Pulmão , Idoso , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Nivolumabe , Neoplasias da Medula Espinal/secundário
5.
Brain Res ; 1120(1): 1-12, 2006 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17020749

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) has shown robust neuroprotective and neuroreparative activities in various animal models of Parkinson's Disease or amyotrophic lateral sclerosis (ALS). The successful use of GDNF as a therapeutic in humans, however, appears to have been hindered by its poor bioavailability to target neurons in the central nervous system (CNS). To improve delivery of exogenous GDNF protein to CNS motor neurons, we employed chemical conjugation techniques to link recombinant human GDNF to the neuronal binding fragment of tetanus toxin (tetanus toxin fragment C, or TTC). The predominant species present in the purified conjugate sample, GDNF:TTC, had a molecular weight of approximately 80 kDa as determined by non-reducing SDS-PAGE. Like GDNF, addition of GDNF:TTC to culture media of neuroblastoma cells expressing GFRalpha-1/c-RET produced a dose-dependent increase in cellular phospho-c-RET levels. Treatment of cultured midbrain dopaminergic neurons with either GDNF or the conjugate similarly promoted both DA neuron survival and neurite outgrowth. However, in contrast to mice treated with GDNF by intramuscular injection, mice receiving GDNF:TTC revealed intense GDNF immunostaining associated with spinal cord motor neurons in fixed tissue sections. That GDNF:TTC provided neuroprotection of axotomized motor neurons in neonatal rats further revealed that the conjugate retained its GDNF activity in vivo. These results indicate that TTC can serve as a non-viral vehicle to substantially improve the delivery of functionally active growth factors to motor neurons in the mammalian CNS.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Medula Espinal/citologia , Toxina Tetânica/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Axotomia/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Humanos , Imuno-Histoquímica/métodos , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma , Fragmentos de Peptídeos/química , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Toxina Tetânica/química , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Neuron ; 62(2): 218-29, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19409267

RESUMO

The basis for selective death of specific neuronal populations in neurodegenerative diseases remains unclear. Parkinson's disease (PD) is a synucleinopathy characterized by a preferential loss of dopaminergic neurons in the substantia nigra (SN), whereas neurons of the ventral tegmental area (VTA) are spared. Using intracellular patch electrochemistry to directly measure cytosolic dopamine (DA(cyt)) in cultured midbrain neurons, we confirm that elevated DA(cyt) and its metabolites are neurotoxic and that genetic and pharmacological interventions that decrease DA(cyt) provide neuroprotection. L-DOPA increased DA(cyt) in SN neurons to levels 2- to 3-fold higher than in VTA neurons, a response dependent on dihydropyridine-sensitive Ca2+ channels, resulting in greater susceptibility of SN neurons to L-DOPA-induced neurotoxicity. DA(cyt) was not altered by alpha-synuclein deletion, although dopaminergic neurons lacking alpha-synuclein were resistant to L-DOPA-induced cell death. Thus, an interaction between Ca2+, DA(cyt), and alpha-synuclein may underlie the susceptibility of SN neurons in PD, suggesting multiple therapeutic targets.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Dopamina/metabolismo , Neurônios/citologia , Substância Negra/citologia , alfa-Sinucleína/metabolismo , Animais , Animais Recém-Nascidos , Calbindinas , Bloqueadores dos Canais de Cálcio/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Citosol/efeitos dos fármacos , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Eletroquímica/métodos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Humanos , Hidrazinas/farmacologia , Levodopa/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteína G de Ligação ao Cálcio S100/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , alfa-Sinucleína/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA