Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 151(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38814743

RESUMO

Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.


Assuntos
Mesoderma , Morfogênese , Osteoblastos , Crânio , Proteínas Wnt , Animais , Osteoblastos/metabolismo , Osteoblastos/citologia , Crânio/embriologia , Camundongos , Mesoderma/citologia , Mesoderma/metabolismo , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Polaridade Celular , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Movimento Celular , Proliferação de Células
2.
bioRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39149271

RESUMO

Spatial genomic technologies include imaging- and sequencing-based methods ( 1-3 ). An emerging subcategory of sequencing-based methods relies on a surface coated with coordinate-associated DNA barcodes, which are leveraged to tag endogenous nucleic acids or cells in an overlaid tissue section ( 4-7 ). However, the physical registration of DNA barcodes to spatial coordinates is challenging, necessitating either high density printing of coordinate-specific oligonucleotides or in situ sequencing/probing of randomly deposited, oligonucleotide-bearing beads. As a consequence, the surface areas available to sequencing-based spatial genomic methods are constrained by the time, labor, cost, and instrumentation required to either print, synthesize or decode a coordinate-tagged surface. To address this challenge, we developed SCOPE (Spatial reConstruction via Oligonucleotide Proximity Encoding), an optics-free, DNA microscopy ( 8 ) inspired method. With SCOPE, the relative positions of randomly deposited beads on a 2D surface are inferred from the ex situ sequencing of chimeric molecules formed from diffusing "sender" and tethered "receiver" oligonucleotides. As a first proof-of-concept, we apply SCOPE to reconstruct an asymmetric "swoosh" shape resembling the Nike logo (16.75 × 9.25 mm). Next, we use a microarray printer to encode a "color" version of the Snellen eye chart for visual acuity (17.18 × 40.97 mm), and apply SCOPE to achieve optics-free reconstruction of individual letters. Although these are early demonstrations of the concept and much work remains to be done, we envision that the optics-free, sequencing-based quantitation of the molecular proximities of DNA barcodes will enable spatial genomics in constant experimental time, across fields of view and at resolutions that are determined by sequencing depth, bead size, and diffusion kinetics, rather than the limitations of optical instruments or microarray printers.

3.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106005

RESUMO

Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral for calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. During apical expansion, we found that mouse calvarial primordia have consistent cellular proliferation, density, and survival with complex tissue scale deformations, raising the possibility that morphogenetic movements underlie expansion. Time lapse light sheet imaging of mouse embryos revealed that calvarial progenitors intercalate in 3D to converge supraorbital arch mesenchyme mediolaterally and extend it apically. In contrast, progenitors located further apically exhibited protrusive and crawling activity. CM cells express non-canonical Wnt/Planar Cell Polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand, Wnt5a-/- mutants have less dynamic cell rearrangements, protrusive activity, and a flattened head shape. Loss of cranial mesenchyme-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of OSX+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin cytoskeleton protein along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis and provide tissue level cues for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA