Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemphyschem ; 19(18): 2405-2410, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29847012

RESUMO

Topological insulators are promising candidates for spintronic applications due to their topologically protected, spin-momentum locked and gapless surface states. The breaking of the time-reversal symmetry after the introduction of magnetic impurities, such as 3d transition metal atoms embedded in two-dimensional molecular networks, could lead to several phenomena interesting for device fabrication. The first step towards the fabrication of metal-organic coordination networks on the surface of a topological insulator is to investigate the adsorption of the pure molecular layer, which is the aim of this study. Here, the effect of the deposition of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on the surface of a prototypical topological insulator, bismuth selenide (Bi2 Se3 ), is investigated. Scanning tunneling microscope images at low-temperature reveal the formation of a highly ordered two-dimensional molecular network. The essentially unperturbed electronic structure of the topological insulator observed by photoemission spectroscopy measurements demonstrates a negligible charge transfer between the molecular layer and the substrate. Density functional theory calculations confirm the picture of a weakly interacting adsorbed molecular layer. These results reveal significant potential of TCNQ for the realization of metal-organic coordination networks on the topological insulator surface.

2.
Nanoscale ; 9(33): 11959-11968, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28792033

RESUMO

The ability to control the transition from a two-dimensional (2D) monolayer to the three-dimensional (3D) molecular structure in the growth of organic layers on surfaces is essential for the production of functional thin films and devices. This has, however, proved to be extremely challenging, starting from the currently limited ability to attain a molecular scale characterization of this transition. Here, through innovative application of low-dose electron diffraction and aberration-corrected transmission electron microscopy (acTEM), combined with scanning tunneling microscopy (STM), we reveal the structural changes occurring as film thickness is increased from monolayer to tens of nanometers for supramolecular assembly of two prototypical benzenecarboxylic acids - terephthalic acid (TPA) and trimesic acid (TMA) - on graphene. The intermolecular hydrogen bonding in these molecules is similar and both form well-ordered monolayers on graphene, but their structural transitions with film thickness are very different. While the structure of TPA thin films varies continuously towards the 3D lattice, TMA retains its planar monolayer structure up to a critical thickness, after which a transition to a polycrystalline film occurs. These distinctive structural evolutions can be rationalized in terms of the topological differences in the 3D crystallography of the two molecules. The templated 2D structure of TPA can smoothly map to its 3D structure through continuous molecular tilting within the unit cell, whilst the 3D structure of TMA is topologically distinct from its 2D form, so that only an abrupt transition is possible. The concept of topological protection of the 2D structure gives a new tool for the molecular design of nanostructured films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA