Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 18(47): 8945-8951, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36421980

RESUMO

The configuration of densely grafted charged polyelectrolyte (PE) brushes is strongly dictated by the properties and behavior of the counterions that screen the PE brush charges and the solvent molecules (typically water) that solvate the brush molecules and these screening counterions. Only recently, efforts have been made to study the PE brushes atomistically, thereby shedding light on the properties of brush-supported ions and water molecules. However, even for such efforts, there are limitations associated with using a generic definition to estimate certain properties of water and ions inside the brush layer. For example, water-water hydrogen bonds (HBs) will behave differently for locations outside and inside the brush layer, given the fact that the densely closely grafted PE brush molecules create a soft nanoconfinement where the water connectivity becomes highly disrupted: therefore, using the same definition to quantify the HBs inside and outside the brush layer will be unwise. In this paper, we address this limitation by employing an unsupervised machine learning (ML) approach to predict the water-water hydrogen bonding inside a cationic PE brush layer modeled using all-atom molecular dynamics (MD) simulations. The ML method, which relies on a clustering approach and uses the equilibrium coordinates of the water molecules (obtained from the all-atom MD simulations) as the input, is capable of identifying the structural modification of water-water HBs (revealed through appropriate clustering of the data) inside the PE brush layer induced soft nanoconfinement. Such capabilities would not have been possible by using a generic definition of the HBs. Our calculations lead to four key findings: (1) the clusters formed inside and outside the brush layer are structurally similar; (2) the margin of the cluster is shorter inside the PE brush layer confirming the possible disruption of the HBs inside the PE brush layer; (3) the average "hydrogen-acceptor-oxygen-donor-oxygen" angle that defines the HB is reduced for the HBs formed inside the brush layer; (4) the use of the generic definition (definition usable for characterizing the HBs in brush-free bulk) leads to an overprediction of the number of HBs formed inside the PE brush layer.

2.
Soft Matter ; 16(33): 7808-7822, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32747883

RESUMO

All atom molecular dynamics (MD) simulations of planar Na+-counterion-neutralized polyacrylic acid (PAA) brushes are performed for varying degrees of ionization (and thereby varying charge density) and varying grafting density. Variation in the PE charge density (or degree of ionization) and grafting density leads to massive changes of the properties of the PE molecules (quantified by the changes in the height and the mobility of the PE brushes) as well as the local arrangement and distribution of the brush-supported counterions and water molecules within the brushes. The effect on the counterions is manifested by the corresponding variation of the counterion mobility, counterion concentration, extent of counterion binding to the charged site of the PE brushes, water-in-salt-like structure formation, and counterion-water-oxygen radial distribution function within the PE brushes. On the other hand, the effect on water molecules is manifested by the corresponding variation of water-oxygen-water-oxygen RDF, local water density, water-water and water-PE functional group hydrogen bond networks, static dielectric constant of water molecules, orientational tetrahedral order parameter, and water mobility. Enforcing such varying degree of ionization of weak polyelectrolytes is possible by changing the pH of the surrounding medium. Thus, our results provide insights into the changes in microstructure (at the atomistic level) of weak polyionic brushes at varying pH. We anticipate that this knowledge will prove to be vital for the efficient design of several nano-scale systems employing PE brushes such as nanomechanical gates, current rectifiers, etc.

3.
Phys Chem Chem Phys ; 20(13): 8647-8657, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29536996

RESUMO

The mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires. Moreover, applied load causes brittle fracture by nucleating cleavage on ZB and WZ NWs. When the tensile load is applied along the [001] direction, the direction of the cleavage planes of ZB NWs changes with temperature. It is found that the {111} planes are the cleavage planes at lower temperatures; on the other hand, the {110} cleavage planes are activated at elevated temperatures. In the case of WZ NWs, fracture of the material is observed to occur by cleaving along the (0001) plane irrespective of temperature when the tensile load is applied along the [0001] direction. Furthermore, the WZ NWs of InP show considerably higher strength than their ZB counterparts. Finally, the impact of strain rate on the failure behavior of InP NWs is also studied, and higher fracture strengths and strains at higher strain rates are found. With increasing strain rate, the number of cleavages also increases in the NWs. This paper also provides in-depth understanding of the failure behavior of InP NWs, which will aid the design of efficient InP NWs-based devices.

4.
J Phys Chem B ; 126(49): 10543-10553, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36454705

RESUMO

Controlling ion distribution inside a charged nanochannel is central to using such channels in diverse applications. Here, we show the possibility of using a charged polyelectrolyte (PE) brush-grafted nanochannel for triggering diverse nanoscopic ion distribution and nanofluidic electroosmotic transport by controlling the valence and size of the counterions (that screen the charges of the PE brushes) and the strength of an externally applied axial electric field. We atomistically simulate separate cases of fully charged polyacrylic acid (PAA) brush functionalized nanochannels with Na+, Cs+, Ca2+, Ba2+, and Y3+ counterions screening the PE charges. Four key findings emerge from our simulations. First, we find that the counterions with a greater valence and a smaller size prefer to remain localized inside the brush layer. Second, for the case where there is an added chloride salt with the same cation (as the screening counterions), there are more coions (Cl- ions) in the brush-free bulk than counterions (for counterions Na+, Ca2+, Ba2+, Y3+): this is a manifestation of the overscreening (OS) of the PE brush layer. Contrastingly, the number of Cs+ ions remain higher than the Cl- ions inside the brush-free bulk, ensuring that there is no OS effect for this case. Third, large applied electric field enables a few Na+, Cs+, and Ba2+ counterions to leave the brush layer and to go to the bulk: this makes the OS of the PE brush layer disappear for the cases of PE brushes being screened by the Na+ and Ba2+ ions. On the other hand, no such electric-field-mediated disappearance of OS is observed for the cases of Ca2+ and Y3+ screening counterions; we attribute this to the firm attachment of these counterions to the negatively charged monomers. Free energy associated with a counterion binding to a PE chain corroborates this diversity in the counterion-specific response to the applied electric field. Finally, we demonstrate that such diverse ion distributions, along with specific electric-field-strength-dependent ion properties, lead to (1) electroosmotic (EOS) transport in nanochannels grafted with PAA brushes screened with Cs+ ions to be always counterion dominated, (2) EOS transport in nanochannels grafted with PAA brushes screened with Ca2+ and Y3+ ions to be always coion-dominated, and (3) EOS transport in nanochannels grafted with PAA brushes screened with Na+ and Ba2+ ions to be coion dominated for smaller electric fields and counterion dominated for larger electric fields.


Assuntos
Eletricidade , Eletro-Osmose , Polieletrólitos/química , Cátions
5.
J Phys Chem B ; 126(30): 5715-5725, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35867556

RESUMO

Interaction between nanoparticles (NPs) and a layer of grafted and solvated polymer molecules has been widely explored for a variety of applications ranging from fabrication of nanocomposites and sensors to developing nanocoating for virus deactivation. In all of these applications, the solvated polymer molecules are necessarily philic to the NPs, and consequently, driven by the favorable NP-polymer interactions, there is the formation of numerous stable direct (i.e., without any intervening solvent molecule) NP-monomer (monomer of the polymer) contact pairs. In this paper, we propose a paradigm shift in this problem: we employ molecular dynamics (MD) simulations and establish that under appropriate conditions, it is possible to develop numerous stable direct contacts between a NP and a solvated polymer layer even when the polymer molecules are extremely phobic to the NP. Here, by "stable" contacts, we refer to the NP-Polymer contacts that remain intact for a finite duration of time; of course, such contacts, after being intact for a finite time duration, might get broken and reformed. In terms of the mechanism of the process, the NP is driven inside a grafted layer of collapsed (in the absence of solvent) and phobic (to the NP) polymer molecules by a liquid drop (polymer is philic to the liquid). Subsequently, the liquid molecules imbibe and diffuse inside the polymer layer, but the NPs, due to the large steric effect imposed by the polymer molecules, remain localized within the polymer layer. This ensures the establishment of several stable direct contacts between the NP and the highly phobic polymer molecules. We quantify these contacts by their numbers, stability, and frequency of occurrences as well as their dependences on the NP-polymer interaction energies and NP sizes. We also quantify the associated NP dynamics inside the polymeric layer. Finally, we argue that our finding will open up avenues for leveraging NP-polymer interactions for a myriad of applications even for cases where the polymer molecules are phobic to the NPs.


Assuntos
Nanocompostos , Nanopartículas , Simulação de Dinâmica Molecular , Polímeros , Solventes
6.
J Phys Chem Lett ; : 5137-5142, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657710

RESUMO

Designing novel and energy-efficient strategies for disturbing stable interfaces between two immiscible liquids hold the key for a myriad of applications. In this Letter, we propose a highly effective strategy where localized heating (costing less energy) of an interface between two immiscible liquids confined in a nanochannel enable rapid imbibition and mixing between these two liquids. The exact dynamics (imbibition or mixing) depend on the relative wettability of these two liquids to the nanochannel wall. For the case where one liquid is philic and the other is phobic to the nanochannel wall, local heating makes a particular liquid imbibe into the zone occupied by the other liquid with the philic liquid occupying near-wall locations and the phobic liquid occupying the bulk (far wall) positions. The extent of imbibition is quantified in terms of the interfacial thickness between the two liquids, which is found to be larger than the case where the entire system is heated (costing greater energy). We further show that this interfacial thickness can be enhanced by changing the position (along the nanochannel) of localized heating. Finally, we demonstrate that for the immiscible two liquid systems having identical wetting interactions with the wall, the lack of preference of occupying the near wall location by any of the liquids lead to their enhanced mixing in the presence of the localized heating (that imparts additional energy to the liquids enforcing them to cross over to the side of the other liquid).

7.
ACS Nano ; 15(11): 17337-17347, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34605243

RESUMO

Energy generation through nanofluidics is a topic of great nanotechnological relevance. Here, we conduct all-atom molecular dynamics (MD) simulations of the transport of water and ions in a pressure-driven flow in nanochannels grafted with charged polyelectrolyte (PE) brushes and discover the possibility of simultaneous electrokinetic energy generation and flow enhancement (henceforth denoted as the electroslippage effect). Such PE-brush-functionalized nanochannels have been recently shown to demonstrate an overscreening (OS) effect (characterized by the presence of a greater number of screening counterions within the PE brush layer than needed to screen the PE brush charges), a consequent presence of excess co-ions within the PE brush-free bulk, and a co-ion-driven electroosmotic (EOS) transport in the presence of small to moderate applied axial electric fields. In this study, however, we find that the streaming current, which represents the current generated by the flow-driven downstream advection of the charge imbalance present within the electric double layer (EDL) that screens the PE brush charges, is governed by the migration of the counterions. This stems from the fact that the highest contribution to the overall streaming current arises from the region near the PE brush-water interface (where there is an excess of counterions), while the brush-free bulk yields a hitherto unreported, but small, co-ion-dictated streaming current. This downstream advection of the charge imbalance (and the resultant counterion-driven streaming current) eventually leads to the development of an electric field (streaming electric field) in the direction that is opposite the direction of the counterion-driven streaming current. The streaming current and the streaming electric field interact to generate the electrokinetic energy. Equally important, this streaming electric field induces an EOS transport, which becomes co-ion-driven, due to the presence of excess co-ions in the brush-free bulk. For the case of nanochannels grafted with negatively charged PE brushes, the streaming electric field will be in a direction that is opposite that of the pressure-driven transport, and hence the co-ion (or anion) driven EOS flow will be in the same direction as the pressure-driven transport. On the other hand, for the case of nanochannels grafted with positively charged PE brushes, the streaming electric field will be in the same direction as the pressure-driven flow, and hence the co-ion (or cation) driven EOS flow, will again be in the same direction as the pressure-driven flow. Therefore, whenever there occurs a presence of the OS and the resulting co-ion-driven EOS transport in PE brush grafted nanochannels, regardless of the sign of the charges of the PE brushes, this EOS transport will always aid the pressure-driven transport and will cause the most fascinating increase in the net volume flow rate across the nanochannel cross section, which is the electroslippage effect.

8.
ACS Nano ; 15(4): 6507-6516, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33797221

RESUMO

Controlling the direction and strength of nanofluidic electrohydrodyanmic transport in the presence of an externally applied electric field is extremely important in a number of nanotechnological applications. Here, we employ all-atom molecular dynamics simulations to discover the possibility of changing the direction of electroosmotic (EOS) liquid flows by merely changing the electric field strength in a nanochannel functionalized with polyelectrolyte (PE) brushes. In exploring this, we have uncovered three facets of nanoconfined PE brush behavior and resulting EOS transport. First, we identify the onset of an overscreening effect: such overscreening refers to the presence of more counterions (Na+) within the brush layer than needed to neutralize the negative brush charges. Accordingly, as a consequence of the overscreening, in the bulk liquid outside the brush layer, there is a greater number of co-ions (Cl-) than counterions in the presence of an added salt (NaCl). Second, this specific ion distribution ensures that the overall EOS flow is along the direction of motion of the co-ions. Such co-ion-dictated EOS transport directly contradicts the notion that EOS flow is always dictated by the motion of the counterions. Finally, for large-enough electric fields, the brush height reduces significantly, causing some of the excess overscreening-inducing counterions to squeeze out of the PE brush layer into the brush-free bulk. As a result, the overscreening effect disappears and the number of co-ions and counterions outside the PE brush layer become similar. Despite that there is an EOS transport, this EOS transport, unlike the standard EOS transport that occurs due to the imbalance of the co-ions and counterions, occurs since a larger residence time of the water molecules in the first solvation shell of the counterions (Na+) ensures a water transport in the direction of motion of the counterions. The net effect is the reversal of the direction of the EOS transport by merely changing the strength of the electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA