Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835610

RESUMO

The immuno-compatibility of implant materials is a key issue for both initial and long-term implant integration. Ceramic implants have several advantages that make them highly promising for long-term medical solutions. These beneficial characteristics include such things as the material availability, possibility to manufacture various shapes and surface structures, osteo-inductivity and osteo-conductivity, low level of corrosion and general biocompatibility. The immuno-compatibility of an implant essentially depends on the interaction with local resident immune cells and, first of all, macrophages. However, in the case of ceramics, these interactions are insufficiently understood and require intensive experimental examinations. Our review summarizes the state of the art in variants of ceramic implants: mechanical properties, different chemical modifications of the basic material, surface structures and modifications, implant shapes and porosity. We collected the available information about the interaction of ceramics with the immune system and highlighted the studies that reported ceramic-specific local or systemic effects on the immune system. We disclosed the gaps in knowledge and outlined the perspectives for the identification to ceramic-specific interactions with the immune system using advanced quantitative technologies. We discussed the approaches for ceramic implant modification and pointed out the need for data integration using mathematic modelling of the multiple ceramic implant characteristics and their contribution for long-term implant bio- and immuno-compatibility.


Assuntos
Materiais Dentários , Próteses e Implantes , Cerâmica/química , Macrófagos , Tecnologia
2.
Front Immunol ; 15: 1349461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596667

RESUMO

The increasing use of medical implants in various areas of medicine, particularly in orthopedic surgery, oncology, cardiology and dentistry, displayed the limitations in long-term integration of available biomaterials. The effective functioning and successful integration of implants requires not only technical excellence of materials but also consideration of the dynamics of biomaterial interaction with the immune system throughout the entire duration of implant use. The acute as well as long-term decisions about the efficiency of implant integration are done by local resident tissue macrophages and monocyte-derived macrophages that start to be recruited during tissue damage, when implant is installed, and are continuously recruited during the healing phase. Our review summarized the knowledge about the currently used macrophages-based in vitro cells system that include murine and human cells lines and primary ex vivo differentiated macrophages. We provided the information about most frequently examined biomarkers for acute inflammation, chronic inflammation, foreign body response and fibrosis, indicating the benefits and limitations of the model systems. Particular attention is given to the scavenging function of macrophages that controls dynamic composition of peri-implant microenvironment and ensures timely clearance of microorganisms, cytokines, metabolites, extracellular matrix components, dying cells as well as implant debris. We outline the perspective for the application of 3D systems for modelling implant interaction with the immune system in human tissue-specific microenvironment avoiding animal experimentation.


Assuntos
Materiais Biocompatíveis , Macrófagos , Animais , Humanos , Camundongos , Inflamação , Citocinas , Próteses e Implantes
3.
Sci Rep ; 9(1): 10591, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332267

RESUMO

Tau aggregates in neurons of brain lesions is a hallmark pathology of tauopathies, including Alzheimer's disease (AD). Recent studies suggest that the RNA-binding protein TIA1 initiates Tau aggregation by inducing the formation of stress granules (SGs) containing Tau. SGs are stress-inducible cytoplasmic protein aggregates containing many RNA-binding proteins that has been implicated as an initial site of multiple pathogenic protein aggregates in several neurodegenerative diseases. In this study, we found that ubiquitin-specific protease 10 (USP10) is a critical factor for the formation of Tau/TIA1/USP10-positive SGs. Proteasome inhibition or TIA1-overexpression in HT22 neuronal cells induced the formation of TIA1/Tau-positive SGs, and the formations were severely attenuated by depletion of USP10. In addition, the overexpression of USP10 without stress stimuli in HT22 cells induced TIA1/Tau/USP10-positive SGs in a deubiquitinase-independent manner. In AD brain lesions, USP10 was colocalized with Tau aggregates in the cell body of neurons. The present findings suggest that USP10 plays a key role in the initiation of pathogenic Tau aggregation in AD through SG formation.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Neurônios/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas tau/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA