Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroscience ; 159(2): 526-39, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19166913

RESUMO

The anxiolytic effects of opiates active at the mu-opioid receptor (mu-OR) may be ascribed, in part, to suppression of neurons that are responsive to the stress-associated peptide, corticotropin releasing factor (CRF), in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). The corticotropin releasing factor receptor (CRFr) and mu-OR are expressed in both the CeA and BNST, but their subcellular relationship to each other is not known in either region. To address this question, we used dual electron microscopic immunolabeling of mu-OR and CRFr in the mouse lateral CeA and anterolateral BNST. Immunolabeling for each receptor was detected in the same as well as in separate somatic, dendritic and axonal profiles of neurons in each region. CRFr had a plasmalemmal or cytoplasmic distribution in many dendrites, including those co-expressing mu-OR. The co-expression of CRFr and mu-OR also was seen near excitatory-type synapses on dendritic spines. In both the CeA and BNST, over 50% of the CRFr-labeled dendritic profiles (dendrites and spines) contained immunoreactivity for the mu-OR. However, less than 25% of the dendritic profiles containing the mu-OR were labeled for CRFr in either region, suggesting that opiate activation of the mu-OR affects many neurons in addition to those responsive to CRF. The dendritic profiles containing CRFr and/or mu-OR received asymmetric, excitatory-type synapses from unlabeled or CRFr-labeled axon terminals. In contrast, the mu-OR was identified in terminals forming symmetric, inhibitory-type synapses. Thus, in both the CeA and BNST, mu-OR and CRFr have strategic locations for mediation of CRF and opioid effects on the postsynaptic excitability of single neurons, and on the respective presynaptic release of excitatory and inhibitory neurotransmitters. The commonalities in the synaptic location of both receptors in the CeA and BNST suggest that this is a fundamental cellular association of relevance to both drug addiction and stress-induced disorders.


Assuntos
Tonsila do Cerebelo/citologia , Neurônios/citologia , Terminações Pré-Sinápticas/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores Opioides mu/metabolismo , Núcleos Septais/citologia , Sinapses/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão/métodos , Microscopia Imunoeletrônica/métodos , Neurônios/metabolismo , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Receptores de Hormônio Liberador da Corticotropina/ultraestrutura , Sinapses/ultraestrutura
2.
J Cell Biol ; 127(5): 1419-33, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7962100

RESUMO

Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH-terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs.


Assuntos
Grânulos Cromafim/química , Endocitose , Endossomos/química , Glicoproteínas/análise , Glicoproteínas de Membrana , Proteínas de Membrana Transportadoras , Neuropeptídeos , Organelas/química , Medula Suprarrenal/química , Medula Suprarrenal/ultraestrutura , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Imunofluorescência , Glicoproteínas/imunologia , Masculino , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Células PC12 , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/química , Transfecção , Proteínas Vesiculares de Transporte de Aminas Biogênicas , Proteínas Vesiculares de Transporte de Monoamina
3.
Neuroscience ; 154(3): 965-77, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18479834

RESUMO

Sensorimotor gating as measured by prepulse inhibition (PPI) to startle-evoking auditory stimulation (AS) is disrupted in schizophrenia and in rodents receiving systemic administration of apomorphine, a dopamine D1/D2 receptor agonist, or MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. The functional analogies and our prior results showing apomorphine- and AS-induced relocation of the dopamine D1 receptor (D1R) in the nucleus accumbens (Acb) shell suggest that apomorphine and AS may affect the subcellular distribution of the NMDA receptor NR1 subunit, a protein that forms protein-protein interactions with the D1R. We quantitatively compared the electron microscopic immunogold labeling for NR1 in dendritic profiles distinguished with respect to presence of D1R immunoreactivity and location in the Acb shell or core of rats receiving a single s.c. injection of vehicle (VEH) or apomorphine (APO) alone, or combined with AS (VEH+AS, APO+AS). The rats in the APO+AS group were previously shown to have PPI deficits, whereas the rats in the VEH+AS group had normal PPI. A significantly higher percentage of plasmalemmal and a lower percentage of cytoplasmic NR1 immunogold particles were seen in D1R-labeled dendritic spines in the Acb shell of the APO+AS group compared with all other groups. D1R-containing small dendrites in the Acb shell of the APO+AS group also showed a significantly higher density of plasmalemmal and a lower density of cytoplasmic NR1 immunogold particles compared with VEH or APO groups. In the Acb core, the APO+AS group had significantly fewer dendritic spines co-expressing NR1 and D1R compared with VEH or VEH+AS groups. These results, together with our earlier findings, suggest that NMDA receptors are preferentially mobilized in D1R-containing Acb neurons of rats showing apomorphine-induced disruption of PPI in a paradigm using acoustic stimulation.


Assuntos
Apomorfina/farmacologia , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Estimulação Acústica , Animais , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Neurônios/ultraestrutura , Núcleo Accumbens/citologia , Núcleo Accumbens/ultraestrutura , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura
4.
Neuroscience ; 151(3): 711-24, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18178320

RESUMO

Cholinergic neurons of the basal forebrain are implicated in startle reflex inhibition by a prior weak stimulus often referred to as prepulse inhibition (PPI) and used as an index of sensorimotor gating deficits in schizophrenia. Gating deficits can be produced in rodent models by acute systemic administration of apomorphine, a non-selective dopamine D1 and D2 receptor agonist that also affects trafficking of neurokinin-1 (NK(1)) receptors induced by startle evoking auditory stimulation (AS) in midbrain neurons. We used electron microscopic immunolabeling of NK(1) receptors and the vesicular acetylcholine transporter (VAchT) to test the hypothesis that the subcellular distributions of these receptors in cholinergic neurons of the rat ventral pallidum are subject to a similar regulation. In vehicle controls, NK(1) immunogold was often seen near cytoplasmic endomembranes in somata and large dendrites, but was more equally distributed in cytoplasmic and plasmalemmal compartments of medium dendrites, and principally located on the plasma membrane of small dendrites. These labeling patterns appeared to be largely independent of whether the NK(1) receptor was co-expressed with VAchT, however only the medium and small VAchT-labeled dendrites showed significant treatment-specific differences in NK(1) immunogold distributions. The NK(1) receptor immunogold particle density on the plasma membrane of medium cholinergic dendrites was significantly enhanced by combined apomorphine and AS, while neither alone affected either the plasmalemmal density or the equality of the plasmalemmal and cytoplasmic distributions of NK(1) receptors in these dendrites. Small cholinergic dendrites showed a significant AS-induced increase in both the plasmalemmal and cytoplasmic density of NK(1) gold particles, and an apomorphine-induced disruption of the preferential plasmalemmal targeting of the NK(1) receptors. These results provide ultrastructural evidence that NK(1) receptors in cholinergic neurons of the ventral pallidum have subcellular locations and plasticity conducive to active involvement in dopamine-dependent sensorimotor processing.


Assuntos
Apomorfina/farmacologia , Dendritos/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Globo Pálido/citologia , Neurônios , Receptores da Neurocinina-1/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Estimulação Acústica/métodos , Análise de Variância , Animais , Dendritos/ultraestrutura , Masculino , Microscopia Imunoeletrônica/métodos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/ultraestrutura , Reflexo de Sobressalto/fisiologia
5.
Neuroscience ; 146(4): 1593-605, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17490822

RESUMO

Prepulse inhibition of the startle response to auditory stimulation (AS) is a measure of sensorimotor gating that is disrupted by the dopamine D1/D2 receptor agonist, apomorphine. The apomorphine effect on prepulse inhibition is ascribed in part to altered synaptic transmission in the limbic-associated shell and motor-associated core subregions of the nucleus accumbens (Acb). We used electron microscopic immunolabeling of dopamine D1 receptors (D1Rs) in the Acb shell and core to test the hypothesis that region-specific redistribution of D1Rs is a short-term consequence of AS and/or apomorphine administration. Thus, comparisons were made in the Acb of rats killed 1 h after receiving a single s.c. injection of vehicle (VEH) or apomorphine (APO) alone or in combination with startle-evoking AS (VEH+AS, APO+AS). In both regions of all animals, the D1R immunoreactivity was present in somata and large, as well as small, presumably more distal dendrites and dendritic spines. In the Acb shell, compared with the VEH+AS group, the APO+AS group had more spines containing D1R immunogold particles, and these particles were more prevalent on the plasma membranes. This suggests movement of D1Rs from distal dendrites to the plasma membrane of dendritic spines. Small- and medium-sized dendrites also showed a higher plasmalemmal density of D1R in the Acb shell of the APO+AS group compared with the APO group. In the Acb core, the APO+AS group had a higher plasmalemmal density of D1R in medium-sized dendrites compared with the APO or VEH+AS group. Also in the Acb core, D1R-labeled dendrites were significantly smaller in the VEH+AS group compared with all other groups. These results suggest that alerting stimuli and apomorphine synergistically affect distributions of D1R in Acb shell and core. Thus adaptations in D1R distribution may contribute to sensorimotor gating deficits that can be induced acutely by apomorphine or develop over time in schizophrenia.


Assuntos
Apomorfina/farmacologia , Dendritos/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Neurônios/ultraestrutura , Núcleo Accumbens , Receptores de Dopamina D1/metabolismo , Reflexo de Sobressalto/fisiologia , Estimulação Acústica/métodos , Análise de Variância , Animais , Dendritos/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/efeitos da radiação
6.
Neuroscience ; 144(4): 1393-408, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17197098

RESUMO

Neurokinin-3 (NK(3)) receptors are prevalent within the substantia nigra (SN) and ventral tegmental area (VTA), where their activation can affect motor and motivational behaviors as well as cardiovascular function and stress responses. These actions are mediated, in part, by dopaminergic neurons in each region. To determine the relevant sites for activation of these receptors, we examined the electron microscopic localization of NK(3) receptors and tyrosine hydroxylase (TH), the catecholamine synthesizing enzyme in dopaminergic neurons in the SN and VTA of rat brain. In each region, immunogold-silver labeling for NK(3) receptors was detected in many somatodendritic profiles, some of which contained TH-immunoreactivity. NK(3)-immunogold particles were largely associated with endomembranes resembling smooth endoplasmic reticulum, and only occasionally located on the plasma membrane in TH-labeled dendrites. In comparison with these dendrites, non-TH immunoreactive dendrites contained significantly more total (VTA) and more plasmalemmal (VTA and SN) NK(3)-immunogold particles. In each region, NK(3) gold particles also were seen in axonal as well as glial profiles, some of which contacted TH-immunoreactive dendrites. The NK(3)-labeled axon terminals formed either symmetric or asymmetric, excitatory-type synapses, the latter of which were significantly more prevalent in the VTA, compared with SN. These results provide the first ultrastructural evidence indicating that NK(3) receptors are available in cytoplasmic reserve in dopaminergic neurons, but more immediately accessible at the plasmalemmal surface of non-dopaminergic dendrites in both the SN and VTA. The activation of these receptors, together with the NK(3) receptors in either the presynaptic axon terminals or glia may contribute to the diverse physiological effects of tachykinins in each region, and most prominently involving excitatory inputs to the VTA.


Assuntos
Dendritos/metabolismo , Receptores da Neurocinina-3/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Dendritos/ultraestrutura , Dopamina/biossíntese , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Masculino , Microscopia Imunoeletrônica , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Substância Negra/ultraestrutura , Transmissão Sináptica/fisiologia , Taquicininas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/ultraestrutura
7.
Neuroscience ; 142(3): 671-90, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16905271

RESUMO

Activation of dopamine D1 or glutamate, N-methyl-d-aspartic acid (NMDA) receptors in the basolateral amygdala (BLA) can potently influence affective behaviors and associative learning. Physical protein-protein interactions also can occur between C-terminal peptides of D1 receptors and the NMDA-receptor subunit-1 (NR1), suggesting intracellular associations of direct relevance to dopaminergic modulation of NMDA currents. We examined this possibility by combining electron microscopic immunolabeling of the D1 and NR1 C-terminal peptides with in vitro patch-clamp recording in the rat BLA. In the in vivo preparations, D1 and NR1 were localized to the surface or endomembranes of many of the same somata and dendrites as well as a few axon terminals, including those forming asymmetric, excitatory-type synapses. In vitro analysis of physiologically characterized projection neurons revealed an excitatory response to bath application of either dopamine or the preferential D1 receptor agonist, dihydrexidine. In these neurons, dopamine also selectively reduced stimulation-evoked isolated NMDA receptor-mediated currents, but not isolated non-NMDA receptor-mediated currents or the response to exogenous NMDA application. The selective reduction of the NMDA receptor-mediated currents suggests that this effect occurs at a postsynaptic locus. Moreover, both D1 and NR1 were localized to postsynaptic surfaces of biocytin-filled and physiologically characterized projection neurons. Our results provide ultrastructural evidence for D1/NR1 endomembrane associations that may dynamically contribute to the attenuation of NMDA receptor-mediated currents following prior activation of D1 receptors in BLA projection neurons. The potential for postsynaptic cross-talk between D1 and NMDA receptors in BLA projection neurons as well as a similar interaction in presynaptic terminals could have important implications for the formation and extinction of affective memories.


Assuntos
Tonsila do Cerebelo/citologia , N-Metilaspartato/metabolismo , Neurônios/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Análise de Variância , Animais , Benzazepinas/farmacologia , Cromanos/farmacologia , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Microscopia Imunoeletrônica/métodos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Fenantridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura
8.
Neuroscience ; 143(2): 547-64, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17027166

RESUMO

Superoxide produced by the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mediates crucial intracellular signaling cascades in the medial nucleus of the solitary tract (mNTS), a brain region populated by catecholaminergic neurons, as well as astroglia that play an important role in autonomic function. The mechanisms mediating NADPH oxidase (phagocyte oxidase) activity in the neural regulation of cardiovascular processes are incompletely understood, however the subcellular localization of superoxide produced by the enzyme is likely to be an important regulatory factor. We used immunogold electron microscopy to determine the phenotypic and subcellular localization of the NADPH oxidase subunits p47(phox), gp91(phox,) and p22(phox) in the mNTS in rats. The mNTS contains a large population of neurons that synthesize catecholamines. Significantly, catecholaminergic signaling can be modulated by redox reactions. Therefore, the relationship of NADPH oxidase subunit labeled neurons or glia with respect to catecholaminergic neurons was also determined by dual labeling for the superoxide producing enzyme and tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis. In the mNTS, NADPH oxidase subunits were present primarily in somatodendritic processes and astrocytes, some of which also contained TH, or were contacted by TH-labeled axons, respectively. Immunogold quantification of NADPH oxidase subunit localization showed that p47(phox) and gp91(phox) were present on the surface membrane, as well as vesicular organelles characteristic of calcium storing smooth endoplasmic reticula in dendritic and astroglial processes. These results indicate that NADPH oxidase assembly and consequent superoxide formation are likely to occur near the plasmalemma, as well as on vesicular organelles associated with intracellular calcium storage within mNTS neurons and glia. Thus, NADPH oxidase-derived superoxide may participate in intracellular signaling pathways linked to calcium regulation in diverse mNTS cell types. Moreover, NADPH oxidase-derived superoxide in neurons and glia may directly or indirectly modulate catecholaminergic neuron activity in the mNTS.


Assuntos
Astrócitos/metabolismo , NADPH Oxidases/metabolismo , Neurônios/metabolismo , Núcleo Solitário/citologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Astrócitos/ultraestrutura , RNA Helicases DEAD-box , Imuno-Histoquímica/métodos , Espaço Intracelular/metabolismo , Espaço Intracelular/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão/métodos , Neurônios/ultraestrutura , Proteínas Nucleares/metabolismo , Ratos , Ratos Sprague-Dawley
9.
J Neurosci ; 19(17): 7356-66, 1999 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10460242

RESUMO

Extracellular levels of serotonin [5-hydroxytryptamine (5-HT)] in the nucleus accumbens (NAc) can influence both cognitive and motor functions involving extensive connections with the frontal cortex. The 5-HT levels reflect vesicular release and plasmalemmal reuptake through the serotonin transporter (SERT). We used electron microscopic immunocytochemistry to determine the sites for SERT activation in the limbic shell and motor-associated core of the rat NAc. Of the SERT-immunoreactive profiles in each region, >90% were serotonergic axons and axon terminals; the remainder were nonserotonergic dendrites and glia. Axonal SERT immunogold labeling was seen mainly at nonsynaptic sites on plasma membranes and often near 5-HT-containing large dense core vesicles (DCVs). SERT-labeled axonal profiles were larger and had a higher numerical density in the shell versus the core but showed no regional differences in their content of SERT immunogold particles. In contrast, immunoreactive dendrites had a lower numerical density in the shell than in the core. SERT labeling in dendrites was localized to segments of plasma membrane near synaptic contacts from unlabeled terminals and/or dendritic appositions. Our results suggest that in the NAc (1) reuptake into serotonergic axons is most efficient after exocytotic release from DCVs, and (2) increased 5-HT release without concomitant increase in SERT expression in individual axons may contribute to higher extracellular levels of serotonin in the shell versus the core. These findings also indicate that SERT may play a minor substrate-dependent role in serotonin uptake or channel activity in selective nonserotonergic neurons and glia in the NAc.


Assuntos
Astrócitos/ultraestrutura , Proteínas de Transporte/análise , Sistema Límbico/fisiologia , Sistema Límbico/ultraestrutura , Glicoproteínas de Membrana/análise , Proteínas de Membrana Transportadoras , Proteínas do Tecido Nervoso , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Núcleo Accumbens/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Serotonina/análise , Animais , Axônios/ultraestrutura , Membrana Celular/ultraestrutura , Dendritos/ultraestrutura , Técnicas Imunoenzimáticas , Masculino , Microscopia Imunoeletrônica , Ratos , Ratos Sprague-Dawley , Proteínas da Membrana Plasmática de Transporte de Serotonina
10.
J Neurosci ; 21(9): 3242-50, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11312309

RESUMO

The activation of delta-opioid receptors (DORs) in the caudate-putamen nucleus (CPN) produces regionally distinct changes in motor functions, many of which are also influenced by opioids active at micro-opioid receptors (MORs). These actions most likely occur in MOR-enriched patch compartments in the CPN. To determine the functional sites for DOR activation and potential interactions involving MOR in these regions, immunoperoxidase and immunogold-silver labeling methods were applied reversibly for the ultrastructural localization of DOR and MOR in single rat brain sections containing patches of the CPN. DOR immunoreactivity was commonly seen within the cytoplasm of spiny and aspiny neurons, many of which also expressed MOR. In dendrites and spines, DOR labeling was preferentially localized to membranes of the smooth endoplasmic reticulum and spine apparatus, whereas MOR showed a prominent plasmalemmal distribution. DOR- and/or MOR-labeled spines received asymmetric, excitatory synapses, some of which showed notable perforations, suggesting the involvement of these receptors in activity-dependent synaptic plasticity. DORs were more frequently detected than were MORs within axon terminals that formed either asymmetric synapses with spine heads or symmetric synapses with spine necks. Our results suggest that in striatal patches, DORs, often in cooperation with MORs, play a direct modulatory role in controlling the postsynaptic excitability of spines, whereas presynaptic neurotransmitter release onto spines is mainly influenced by DOR activation. In comparison with MOR, the prevalent association of DOR with cytoplasmic organelles that are involved in intracellular trafficking of cell surface proteins suggests major differences in availability of these receptors to extracellular opioids.


Assuntos
Membrana Celular/metabolismo , Corpo Estriado/metabolismo , Citoplasma/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Animais , Anticorpos/metabolismo , Especificidade de Anticorpos , Membrana Celular/ultraestrutura , Corpo Estriado/ultraestrutura , Citoplasma/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Neurônios/metabolismo , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley
11.
J Neurosci ; 21(3): 823-33, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11157068

RESUMO

Cannabinoids and opioids are widely consumed drugs of abuse that produce motor depression, in part via respective activation of the cannabinoid subtype 1 receptor (CB1R) and the mu-opioid receptor (muOR), in the striatal circuitry originating in the caudate putamen nucleus (CPN). Thus, the CB1R and muOR may show similar targeting in the CPN. To test this hypothesis, we examined the electron microscopic immunocytochemical labeling of CB1R and muOR in CPN patches of rat brain. Of the CB1R-labeled profiles, 34% (588) were dendrites, presumably arising from spiny as well as aspiny-type somata, which also contained CB1R immunoreactivity. In dendrites, CB1R often was localized to nonsynaptic and synaptic plasma membranes, particularly near asymmetric excitatory-type junctions. Almost one-half of the CB1R-labeled dendrites contained muOR immunoreactivity, whereas only 20% of all muOR-labeled dendrites expressed CB1R. Axons and axon terminals as well as abundant glial processes also showed plasmalemmal CB1R and were mainly without muOR immunoreactivity. Many CB1R-labeled axon terminals were small and without recognizable synaptic junctions, but a few also formed asymmetric, or more rarely symmetric, synapses. The CB1R-labeled glial processes were often perivascular or perisynaptic, surrounding asymmetric excitatory-type axospinous synapses. Our results show that in CPN patches CB1R and muOR are targeted strategically to some of the same postsynaptic neurons, which may account for certain similarities in motor function. Furthermore, they also provide evidence that CB1R may play a major role in the modulation of presynaptic transmitter release and glial functions that are unaffected in large part by opioids active at muOR in CPN.


Assuntos
Núcleo Caudado/metabolismo , Neurônios/metabolismo , Putamen/metabolismo , Receptores de Droga/metabolismo , Receptores Opioides mu/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Núcleo Caudado/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Putamen/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura
12.
J Neurosci ; 20(13): 4798-808, 2000 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10864937

RESUMO

Nitration of protein tyrosine residues by nitric oxide (NO)-derived reactive species results in the production of stable nitrotyrosine (NT) moieties that are immunochemically detectable in many regions of normal brain and enriched in those areas containing constitutive nitric oxide synthase (cNOS). These include the caudate-putamen nucleus (CPN) and the globus pallidus, which receives major inhibitory input from the CPN. To determine the functional sites for NT production in these critical motor nuclei, we examined the electron microscopic immunocytochemical localization of NT and cNOS in rat brain. In the CPN, NT was localized to the somata and dendrites of cNOS-containing interneurons and spiny neurons, some of which received input from cNOS-labeled terminals. The NT immunoreactivity was most prevalent on outer mitochondrial membranes and nearby segments of the plasma membranes in dendrites and within asymmetric synapses on dendritic spines. In the CPN and globus pallidus, there was also a prominent labeling of NT in astrocytic processes, small axons, and tubulovesicles and/or synaptic vesicles in axon terminals. These terminals formed mainly asymmetric synapses in the CPN and inhibitory-type synapses in the globus pallidus where they often apposed cNOS-containing terminals that also formed asymmetric, excitatory-type synapses. Our results suggest that NT is generated by mechanisms requiring the dual actions of excitatory transmitters and NO derived either from interneurons in the CPN or from excitatory afferents in the globus pallidus. The findings also implicate NT in the physiological actions of NO within the striatal circuitry and, particularly, in striatopallidal neurons severely affected in Huntington's disease.


Assuntos
Núcleo Caudado/ultraestrutura , Núcleo Celular/ultraestrutura , Globo Pálido/ultraestrutura , Neurônios/ultraestrutura , Putamen/ultraestrutura , Tirosina/análogos & derivados , Animais , Astrócitos/ultraestrutura , Axônios/ultraestrutura , Citoplasma/ultraestrutura , Dendritos/ultraestrutura , Masculino , Microscopia Imunoeletrônica , Mitocôndrias/ultraestrutura , Óxido Nítrico Sintase/análise , Óxido Nítrico Sintase Tipo I , Membrana Nuclear/ultraestrutura , Ratos , Ratos Sprague-Dawley , Tirosina/análise , Vacúolos/ultraestrutura
13.
Neuroscience ; 135(4): 1309-23, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16165296

RESUMO

Neurokinin-1 receptors show activity-dependent changes in their surface distributions that are critical in spinal pain mechanisms, and also may play an important role in the motor and affective behaviors influenced by dopaminergic projections from the substantia nigra and ventral tegmental area. To determine the relevant sites for neurokinin-1 receptor activation in these midbrain regions, we examined the electron microscopic immunolabeling of neurokinin-1 receptors and the dopamine-synthesizing enzyme, tyrosine hydroxylase in normal rats. We also examined whether neurokinin-1 receptor distributions in one or both regions are affected by (1) startle-evoking intense auditory stimulation or (2) acute administration of apomorphine, a dopamine D1/D2 agonist that enhances startle while paradoxically reducing the prepulse inhibition produced by low intensity conditioning stimuli in rat models of schizophrenia. In each region, neurokinin-1 immunogold was located on the plasma membrane and endomembranes of somatodendritic profiles with or without tyrosine hydroxylase. As compared with controls, animals receiving intense auditory stimulation either alone or together with smaller low intensity prepulses showed a significant increase in neurokinin-1-plasmalemmal labeling in non-dopaminergic dendrites of both regions, and a reduction in this labeling in dopaminergic dendrites of the ventral tegmental area. Both effects were diminished following apomorphine administration. In absence of the intense auditory stimulation, however, apomorphine increased neurokinin-1-immunogold particles on the plasma membrane of the non-dopaminergic dendrites exclusively in the substantia nigra. Our results are the first to show that neurokinin-1 receptors have plasmalemmal distributions in dopaminergic and non-dopaminergic neurons that can be differentially modified by startle-evoking auditory stimulation. They suggest that while apomorphine can independently affect neurokinin-1 receptor trafficking in substantia nigra motor circuits, its effects on neurokinin-1 receptor distributions in the ventral tegmental area are exclusively dependent on sensory activation.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores da Neurocinina-1/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo , Estimulação Acústica , Animais , Apomorfina/farmacologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Masculino , Microscopia Imunoeletrônica , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Substância Negra/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos
14.
Neuroscience ; 130(3): 713-23, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15590154

RESUMO

The angiotensin II AT-1A receptor (AT-1A) is the major mediator of the hypertensive actions of angiotensin II (ANG II) in the medial nucleus of the solitary tract (mNTS). The localization of the AT-1A receptor at surface or intracellular sites is an important determinant of its signaling properties, including intercellular or intracrine communication. However, the spatial localization of this protein, particularly within small distal or intermediate size dendrites of mNTS neurons, is unknown. Within the mNTS, ANG II and catecholamines interact in the regulation of autonomic function; however, it is unknown if AT-1A receptors are present at functional sites in catecholamine containing dendrites, or are contacted by catecholamine containing axon terminals. We compared surface and intracellular distributions of the AT-1A receptor in dendritic processes from the mNTS using immunogold electron microscopy in conjunction with immunoperoxidase labeling for tyrosine hydroxylase (TH) and morphometric analysis. Collapsed across all AT-1A-labeled dendritic profiles, immunogold labeling was more frequent in intracellular sites as compared with the plasma membrane. Small (<0.6 microm) dendritic profiles contained a higher ratio of particles associated with the surface membrane when compared with larger profiles. Approximately 27% of all AT-1A receptor-labeled dendritic profiles also contained labeling for TH. Approximately 12% of dendritic profiles single labeled for the AT-1A receptor were contacted by TH containing axons or axon terminals. The present results provide the first quantitative demonstration of select plasmalemmal and intracellular localizations of AT-1A receptors in dendritic processes of mNTS neurons, including those containing TH, or contacted by catecholaminergic axon terminals. These results suggest that AT-1A receptors are positioned for modulation of catecholamine signaling in the mNTS.


Assuntos
Catecolaminas/metabolismo , Neurônios/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Núcleo Solitário/metabolismo , Animais , Dendritos/metabolismo , Dendritos/ultraestrutura , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Masculino , Proteínas de Membrana/metabolismo , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/enzimologia , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia , Núcleo Solitário/ultraestrutura , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Neuroscience ; 307: 83-97, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26306872

RESUMO

There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-D-aspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFP neurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in AngII-induced hypertension is reflected by NMDA receptor trafficking in presumptive sympathoexcitatory neurons in the RVLM.


Assuntos
Hipertensão/patologia , Bulbo/citologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Caracteres Sexuais , Angiotensina II/toxicidade , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/genética , Masculino , Bulbo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , RNA Mensageiro/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de N-Metil-D-Aspartato/genética , Estilbamidinas/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Hypertension ; 6(5 Pt 2): II22-7, 1984.
Artigo em Inglês | MEDLINE | ID: mdl-6094345

RESUMO

Recent developments in the characterization of the adrenergic receptors have led to the identification and purification of the binding subunits of the various catecholamine receptors. beta-Adrenergic receptors have been identified in a wide variety of tissues by photoaffinity labeling with the antagonist [125I]p-azidobenzylcrazolol and have been purified to apparent homogeneity from several of these tissues. Thus, beta 1- and beta 2-adrenergic receptor binding sites appear to reside on peptides with molecular weights of 60,000 to 65,000. The alpha 1-adrenergic receptor binding subunit has been identified in several peripheral tissues by photoaffinity labeling with a newly developed probe (4-amino-6,7-dimethoxy-2[4(5(3-[125I]-iodo-4-azidophenyl) pentanoyl)-1-piperazinyl]-quinazoline, or [125I]APDQ). This binding site resides on a peptide with a molecular weight of 80,000. These techniques have been applied to the elucidation of the binding subunit structure of these receptors in the rat central nervous system with the result that beta 1-, beta 2-, and alpha 1-adrenergic binding sites appear to reside on peptides of similar molecular weight to those identified in peripheral tissues (i.e., 60,000-65,000 and 80,000). Using immunocytochemical techniques with antibodies raised to the frog erythrocyte, beta 2-adrenergic receptor, beta-adrenergic receptors were identified at the light microscopic level in regions of the rat and frog brain previously found by ligand binding and autoradiography to be richest in beta-adrenergic receptors. At the electron microscopic level, beta-receptor immunoreactivity was found throughout dendritic processes with local accumulations at certain postsynaptic sites. This finding is consistent with the idea that the density of the receptors might be significantly increased at postsynaptic junctions of adrenergic neurons.


Assuntos
Encéfalo/metabolismo , Receptores Adrenérgicos/metabolismo , Marcadores de Afinidade , Animais , Anuros , Azidas/metabolismo , Membrana Celular/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Histocitoquímica , Técnicas Imunoenzimáticas , Peso Molecular , Fotoquímica , Propanolaminas/metabolismo , Ratos , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo
17.
J Comp Neurol ; 362(1): 71-85, 1995 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-8576429

RESUMO

The N-methyl-D-aspartate (NMDA)-type glutamate receptor in the basolateral amygdala (BLA) has been implicated in activity-dependent plasticity important for cortically evoked acquisition of fear-potentiated startle response. We examined the ultrastructural immunoperoxidase labeling of the R1 subunit of the NMDA receptor in the BLA of adult rats to determine the potential cellular and subcellular sites mediating the effects generated by NMDA activation. The localization was compared with that seen in the bed nucleus of the stria terminalis (BNST), the major efferent pathway from the central nucleus of the amygdala, which has a more pronounced involvement in autonomic function. Electron microscopy established that in the BLA, 68.4% (n = 177) of the profiles showing NMDAR1-like immunoreactivity (NMDAR1-LI) were dendrites, and 19.8% were distal tips of astrocytic processes. In contrast, profiles containing NMDAR1-LI (n = 262) in the BNST were more equally distributed between dendrites (37.4%) and axons (38.2%). The subcellular localization of NMDAR1 immunoreactivity was, however, similar in both regions. Our findings provide the first ultrastructural evidence that glutamate may prominently act through NMDAR1 receptors to elicit postsynaptic actions on intrinsic neurons in the BLA and BNST. The results also indicate that, in the BLA, the NMDAR1 receptor plays an important role in astrocytic function, whereas the receptor is more preferentially a presynaptic modulator in axons which terminate in or pass through the BNST.


Assuntos
Tonsila do Cerebelo/química , Receptores de N-Metil-D-Aspartato/análise , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/ultraestrutura , Animais , Astrócitos/química , Astrócitos/ultraestrutura , Masculino , Microscopia Eletrônica , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/química , Sinapses/ultraestrutura
18.
J Comp Neurol ; 329(3): 337-53, 1993 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-8096227

RESUMO

Catecholamines in the nucleus tractus solitarii (NTS) have been implicated in autonomic responses to circulating hormones that act on neurons in the area postrema, the most caudal circumventricular organ in brain. We combined immunoperoxidase labeling of the anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHAL) with immunogold-silver labeling of tyrosine hydroxylase to determine whether this enzymatic marker for catecholamines was present in efferents from the area postrema or their targets in the rat NTS. At survival periods of 10-12 days after PHAL injections into the area postrema, light microscopy revealed numerous varicose processes containing peroxidase reaction product for PHAL in the dorsomedial, medial, and commissural NTS. Some of these labeled processes were located near neuronal perikarya and processes containing immunogold-silver intensified reaction product for tyrosine hydroxylase. Electron microscopy of the commissural and dorsomedial NTS established that the majority of the labeling for PHAL was in axon terminals, whereas immunogold labeling for tyrosine hydroxylase was mainly in soma and dendrites. Only 3 out of 579 PHAL-labeled terminals also contained detectable tyrosine hydroxylase immunoreactivity. Fifty-eight percent (335/579) of the PHAL-labeled terminals formed synapses with recognized symmetric junctions, whereas the remainder lacked synaptic specializations within the examined series of serial sections. Of those PHAL terminals forming recognized symmetric junctions, 22% were on tyrosine hydroxylase-immunoreactive dendrites, 74% on unlabeled dendrites and 4% on unlabeled axon terminals. From a total of 1,250 observed contacts on tyrosine hydroxylase labeled dendrites, 88 (7%) contained PHAL, 9 (< 1%) contained TH, and 1,180 (93%) lacked detectable immunoreactivity and formed primarily symmetric synapses. We conclude that a few catecholamine, but mainly noncatecholamine efferents from the area postrema provide a monosynaptic, and most likely inhibitory input to target neurons both with and without tyrosine hydroxylase immunoreactivity in the dorsomedial and commissural NTS. Synapses between the efferent terminals from the area postrema and tyrosine hydroxylase labeled and unlabeled dendrites as well as unlabeled axons in these specific subnuclei of the NTS suggest multiple sites for modulation of gastric and cardiovascular reflexes in response to circulating peptides.


Assuntos
Bulbo/enzimologia , Neurônios Eferentes/enzimologia , Neurônios/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Axônios/imunologia , Catecolaminas/metabolismo , Dendritos/imunologia , Histocitoquímica , Técnicas Imunoenzimáticas , Imunoglobulina G/imunologia , Imuno-Histoquímica , Masculino , Bulbo/anatomia & histologia , Bulbo/citologia , Microscopia Imunoeletrônica , Terminações Nervosas/imunologia , Fito-Hemaglutininas , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/imunologia
19.
J Comp Neurol ; 247(3): 326-43, 1986 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-3522659

RESUMO

We sought to determine (1) the ultrastructural localization and (2) the extrinsic sources of neurotensin-like immunoreactivity (NTLI) in the parabrachial region (PBR). The brains from untreated adult male rats and from others that received intraventricular injections of colchicine (100 micrograms/7.5 microliters saline) 24 hours prior to death were fixed by perfusion with acrolein or glutaraldehyde and paraformaldehyde. Coronal sections were immunocytochemically labeled with a polyclonal rabbit antiserum to neurotensin and the PAP method. Western dot-blots and immunocytochemical labeling with adsorbed antiserum revealed significant cross-reaction only against NT, NT8-13, and glutamine (Gln)4-NT. In the ultrastructural study, the most numerous labeled profiles were axons and axon terminals in both colchicine-treated and control animals. The terminals containing NTLI were characterized by a mixed population of small, clear and large, dense core vesicles; asymmetric junctions principally with unlabeled dendrites; and a few synaptic specializations with unlabeled axon terminals. Compared to axon terminals, relatively few perikarya or dendrites had detectable levels of NTLI in either untreated or colchicine-treated animals. The labeled perikarya measured 8-10 microns in longest cross-sectional diameter, contained NTLI throughout a narrow rim of cytoplasm, and received a few somatic synapses from unlabeled terminals. From the relative density of axon terminals and sparsity of perikarya and dendrites, we conclude that the NTLI in the PBR is principally derived from extrinsic neurons. However, the intrinsic neurons with NTLI may also contribute to the immunoreactivity in the axon terminals of the PBR. We sought to determine the precise location of the extrinsic neurons that contribute to the NTLI in axon terminals in the PBR. Following unilateral injections of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP), dual labeling was most evident in a large population of neurons located in the dorsal, medial and commissural nuclei of the solitary tracts, ipsilateral to the side of the injection. However, a few perikarya containing both the retrogradely transported WGA-HRP and immunocytochemical labels for NT were also detected in the caudal ventrolateral reticular formation, the locus coeruleus, and the paraventricular and lateral hypothalamic nuclei. We conclude that (1) NT or a closely related peptide is present in intrinsic neurons and multiple afferent pathways to the PBR; and (2) the axon terminals with NTLI have synaptic interactions with dendrites of intrinsic neurons and with axon terminals that may have either extrinsic or intrinsic origins.


Assuntos
Bulbo/metabolismo , Neurotensina/metabolismo , Ponte/metabolismo , Animais , Diencéfalo/metabolismo , Técnicas Imunoenzimáticas , Locus Cerúleo/metabolismo , Masculino , Microscopia Eletrônica , Ponte/ultraestrutura , Ratos , Ratos Endogâmicos , Telencéfalo/metabolismo
20.
J Comp Neurol ; 320(2): 145-60, 1992 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-1377716

RESUMO

Physiological and pharmacological studies indicate that descending projections from the prefrontal cortex modulate dopaminergic transmission in the nucleus accumbens septi and ventral tegmental area. We investigated the ultrastructural bases for these interactions in rat by examining the synaptic associations between prefrontal cortical terminals labeled with anterograde markers (lesion-induced degeneration or transport of Phaseolus vulgaris leucoagglutinin; PHA-L) and neuronal processes containing immunoreactivity for the catecholamine synthesizing enzyme, tyrosine hydroxylase. Prefrontal cortical terminals in the nucleus accumbens and ventral tegmental area contained clear, round vesicles and formed primarily asymmetric synapses on spines or small dendrites. In the ventral tegmental area, these terminals also formed asymmetric synapses on large dendrites and a few symmetric axodendritic synapses. In the nucleus accumbens septi, degenerating prefrontal cortical terminals synapsed on spiny dendrites which received convergent input from terminals containing peroxidase immunoreactivity for tyrosine hydroxylase, or from unlabeled terminals. In single sections, some tyrosine hydroxylase-labeled terminals formed thin and punctate symmetric synapses with dendritic shafts, or the heads and necks of spines. Close appositions, but not axo-axonic synapses, were frequently observed between degenerating prefrontal cortical afferents and tyrosine hydroxylase-labeled or unlabeled terminals. In the ventral tegmental area, prefrontal cortical terminals labeled with immunoperoxidase for PHA-L were in synaptic contact with dendrites containing immunogold reaction product for tyrosine hydroxylase, or with unlabeled dendrites. These results suggest that: (1) catecholaminergic (mainly dopaminergic) and prefrontal cortical terminals in the nucleus accumbens septi dually synapse on common spiny neurons; and (2) dopaminergic neurons in the ventral tegmental area receive monosynaptic input from prefrontal cortical afferents. This study provides the first ultrastructural basis for multiple sites of cellular interaction between prefrontal cortical efferents and mesolimbic dopaminergic neurons.


Assuntos
Lobo Frontal/fisiologia , Terminações Nervosas/fisiologia , Neurônios Eferentes/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/citologia , Sinapses/fisiologia , Tegmento Mesencefálico/citologia , Animais , Catecolaminas/fisiologia , Córtex Cerebral/ultraestrutura , Dopamina/fisiologia , Lobo Frontal/citologia , Histocitoquímica , Sistema Límbico/ultraestrutura , Masculino , Microscopia Eletrônica , Núcleo Accumbens/fisiologia , Fito-Hemaglutininas/imunologia , Fito-Hemaglutininas/metabolismo , Ratos , Ratos Endogâmicos , Coloração e Rotulagem , Tegmento Mesencefálico/fisiologia , Tirosina 3-Mono-Oxigenase/imunologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA