Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(51): 21560-21566, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34923815

RESUMO

High entropy (HE) materials have received significant attention in recent years, due to their intrinsically high levels of configurational entropy. While there has been significant work exploring HE alloys and oxides, new families of HE materials are still being revealed. In this work we present the synthesis of a novel family of HE materials based on lanthanide oxysulfides. Here, we implement lanthanide dithiocarbamates as versatile precursors that can be mixed at the molecular scale prior to thermolysis in order to produce the high entropy oxysulfide. The target of our synthesis is the HE Ln2SO2 phase, where Ln = Pr, Nd, Gd, Dy, Er and where Ln = Pr, Nd, Gd, Dy for 5 and 4 lanthanide samples, respectively. We confirmed the structure of samples produced by powder X-ray diffraction, electron microscopy, and high-resolution energy dispersive X-ray spectroscopy. Optical spectroscopy shows a broad emission feature centered around 450 nm as well as a peak in absorption at around 280 nm. From this data we calculate the band gap and Urbach energies of the materials produced.

2.
Entropy (Basel) ; 23(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440904

RESUMO

The expanded compositional freedom afforded by high-entropy alloys (HEAs) represents a unique opportunity for the design of alloys for advanced nuclear applications, in particular for applications where current engineering alloys fall short. This review assesses the work done to date in the field of HEAs for nuclear applications, provides critical insight into the conclusions drawn, and highlights possibilities and challenges for future study. It is found that our understanding of the irradiation responses of HEAs remains in its infancy, and much work is needed in order for our knowledge of any single HEA system to match our understanding of conventional alloys such as austenitic steels. A number of studies have suggested that HEAs possess `special' irradiation damage resistance, although some of the proposed mechanisms, such as those based on sluggish diffusion and lattice distortion, remain somewhat unconvincing (certainly in terms of being universally applicable to all HEAs). Nevertheless, there may be some mechanisms and effects that are uniquely different in HEAs when compared to more conventional alloys, such as the effect that their poor thermal conductivities have on the displacement cascade. Furthermore, the opportunity to tune the compositions of HEAs over a large range to optimise particular irradiation responses could be very powerful, even if the design process remains challenging.

3.
Materials (Basel) ; 16(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36676456

RESUMO

The Ta-Ru binary phase diagram has not been fully investigated, but shows potential for a two-phase region of A2 + B2. Given the high melting points of both Ta and Ru, such an alloy would have the potential for high temperature strength. A Ta72Ru28 alloy was arc melted and investigated in the as-cast and aged (at 1000 °C) states. The as cast alloy was composed of A2 and B2, albeit not in a superalloy-like morphology. A third phase was found in the aged alloy, which has not been reported before, and which is also a coherent superlattice phase of the Ta BCC matrix. The structure of this phase was found to be consistent with the tetragonal Cr2Al prototype structure, with lattice parameters of (a, a, 3a), where a is the Ta BCC lattice parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA