Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(7): 6836-6852, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39057050

RESUMO

The tumor microenvironment (TME) includes immune and stromal cells and noncellular extracellular matrix (ECM) components. Tumor-associated macrophages (TAMs) are the most important immune cells in TME and are crucial for carcinomas' progression. The purpose was to analyze direct and indirect interactions in co-culture of tumor cells with monocytes/macrophages and, additionally, to indicate which interactions are more important for cancer development. Cytokines, reactive oxygen species, nitric oxide level, tumor cell cycle and changes in tumor cell morphology after human tumor cells (Hep-2 and RK33 cell lines) with human monocyte/macrophage (THP-1 cell line) interactions were tested. Morphology and cytoskeleton organization of tumor cells did not change after co-culture with macrophages. In co-culture of tumor cells with human monocyte, changes in the percentage of tumor cells in cell cycle phases was observed. No significant changes in reactive oxygen species (ROS) were found in the co-culture as compared to the tumor cell mono-culture. Monocytes produced about three times higher ROS than tumor cells. In co-cultures, a lower nitric oxide (NOx) level was found as compared to the sum of the production by both mono-cultures. Co-culture conditions limited the production of cytokines (IL-4, IL-10 and IL-13) as compared to the sum of their level in mono-cultures. In conclusion, macrophages influence tumor cell growth and functions. Mutual (direct and paracrine) interactions between tumor cells and macrophages changed cytokine production and tumor cell cycle profile. The data obtained may allow us to initially indicate which kind of interactions may have a greater impact on cancer development processes.

2.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38928094

RESUMO

Endometrial cancer (EC) is one of the most common malignant tumors among women in the 21st century, whose mortality rate is increasing every year. Currently, the diagnosis of EC is possible only after a biopsy. However, it is necessary to find a new biomarker that will help in both the diagnosis and treatment of EC in a non-invasive way. Circular RNAs (circRNAs) are small, covalently closed spherical and stable long non-coding RNAs (lncRNAs) molecules, which are abundant in both body fluids and human tissues and are expressed in various ways. Considering the new molecular classification of EC, many studies have appeared, describing new insights into the functions and mechanisms of circRNAs in EC. In this review article, we focused on the problem of EC and the molecular aspects of its division, as well as the biogenesis, functions, and diagnostic and clinical significance of circRNAs in EC.


Assuntos
Biomarcadores Tumorais , Neoplasias do Endométrio , RNA Circular , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , RNA Circular/genética , Feminino , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
3.
Sci Rep ; 14(1): 8025, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580807

RESUMO

The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Materiais Biocompatíveis/farmacologia , Lipopolissacarídeos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/farmacologia , Staphylococcus epidermidis , Puromicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA