Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 60(4): 965-977, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30884523

RESUMO

Purpose: Retinal ischemia, a common cause of several vision-threatening diseases, contributes to the death of retinal neurons, particularly retinal ganglion cells (RGCs). Heat shock transcription factor 1 (HSF1), a stress-responsive protein, has been shown to be important in response to cellular stress stimuli, including ischemia. This study is to investigate whether HSF1 has a role in retinal neuronal injury in a mouse model of retinal ischemia-reperfusion (IR). Methods: IR was induced by inserting an infusion needle into the anterior chamber of the right eye and elevating a saline reservoir connected to the needle to raise the intraocular pressure to 110 mm Hg for 45 minutes. HSF1, Hsp70, molecules in the endoplasmic reticulum (ER) stress branches, tau phosphorylation, inflammatory molecules, and RGC injury were determined by immunohistochemistry, Western blot, or quantitative PCR. Results: HSF1 expression was significantly increased in the retina 6 hours after IR. Using our novel transgenic mice carrying full-length human HSF gene, we demonstrated that IR-induced retinal neuronal apoptosis and necroptosis were abrogated 12 hours after IR. RGCs and their function were preserved in the HSF1 transgenic mice 7 days after IR. Mechanistically, the beneficial effects of HSF1 may be mediated by its induction of chaperone protein Hsp70 and alleviation of ER stress, leading to decreased tau phosphorylation and attenuated inflammatory response 12 to 24 hours after IR. Conclusions: These data provide compelling evidence that HSF1 is neuroprotective against retinal IR injury, and boosting HSF1 expression may be a beneficial strategy to limit neuronal degeneration in retinal diseases.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição de Choque Térmico/genética , Traumatismos do Nervo Óptico/genética , Traumatismo por Reperfusão/genética , Doenças Retinianas/genética , Animais , Western Blotting , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/genética , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Leucostasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Compressão Nervosa , Neuroproteção/fisiologia , Traumatismos do Nervo Óptico/prevenção & controle , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/prevenção & controle , Doenças Retinianas/prevenção & controle , Tomografia de Coerência Óptica , Proteínas tau/metabolismo
2.
Biotechnol J ; 13(3): e1700227, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29072373

RESUMO

CHO cells are the most prevalent platform for modern bio-therapeutic production. Currently, there are several CHO cell lines used in bioproduction with distinct characteristics and unique genotypes and phenotypes. These differences limit advances in productivity and quality that can be achieved by the most common approaches to bioprocess optimization and cell line engineering. Incorporating omics-based approaches into current bioproduction processes will complement traditional methodologies to maximize gains from CHO engineering and bioprocess improvements. In order to highlight the utility of omics technologies in CHO bioproduction, the authors discuss current applications as well as limitations of genomics, transcriptomics, proteomics, metabolomics, lipidomics, fluxomics, glycomics, and multi-omics approaches and the potential they hold for the future of bioproduction. Multiple omics approaches are currently being used to improve CHO bioprocesses; however, the application of these technologies is still limited. As more CHO-omic datasets become available and integrated into systems models, the authors expect significant gains in product yield and quality. While individual omics technologies provide incremental improvements in bioproduction, the authors will likely see the most significant gains by applying multi-omics and systems biology approaches to individual CHO cell lines.


Assuntos
Células CHO , Genômica , Metabolômica , Proteômica , Animais , Engenharia Celular/métodos , Cricetulus , Glicômica , Humanos , Biologia de Sistemas
3.
Free Radic Biol Med ; 43(12): 1584-93, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18037124

RESUMO

Molecular events that control skeletal muscle injury and regeneration are poorly understood. However, inflammation associated with oxidative stress is considered a key player in modulating this process. To understand the consequences of oxidative stress associated with muscle injury, inflammation, and regeneration, hind-limb muscles of C57Bl/6J mice were studied after injection of cardiotoxin (CT). Within 1 day post-CT injection, polymorphonuclear neutrophilic leukocyte accumulation was extensive. Compared to baseline, tissue myeloperoxidase (MPO) activity was elevated eight- and fivefold at 1 and 7 days post-CT, respectively. Ubiquitinylated protein was elevated 1 day postinjury and returned to baseline by 21 days. Cysteine residues of creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were irreversibly oxidized within 1 day post-CT injection and were associated with protein conformational changes that fully recovered after 21 days. Importantly, protein structural alterations occurred in conjunction with significant decreases in CK activity at 1, 3, and 7 days post-CT injury. Interestingly, elevations in tissue MPO activity paralleled the time course of conformational changes in CK and GAPDH. In combination, these results demonstrate that muscle proteins in vivo are structurally and functionally altered via the generation of reactive oxygen species produced during inflammatory events after muscle injury and preceding muscle regeneration.


Assuntos
Músculo Esquelético/enzimologia , Músculo Esquelético/lesões , Animais , Cardiotoxinas/toxicidade , Creatina Quinase/química , Creatina Quinase/metabolismo , Cisteína/química , Radicais Livres/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Oxirredução , Estresse Oxidativo , Conformação Proteica/efeitos dos fármacos , Regeneração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA