Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cladistics ; 39(4): 337-357, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37078455

RESUMO

Dance flies and relatives (Empidoidea) are a diverse and ecologically important group of Diptera in nearly all modern terrestrial ecosystems. Their fossil record, despite being scattered, attests to a long evolutionary history dating back to the early Mesozoic. Here, we describe seven new species of Empidoidea from Cretaceous Kachin amber inclusions, assigning them to the new genus Electrochoreutes gen.n. (type species: Electrochoreutes trisetigerus sp.n.) based on unique apomorphies among known Diptera. Like many extant dance flies, the males of Electrochoreutes are characterized by species-specific sexually dimorphic traits, which are likely to have played a role in courtship. The fine anatomy of the fossils was investigated through high-resolution X-ray phase-contrast microtomography to reconstruct their phylogenetic affinities within the empidoid clade, using cladistic reasoning. Morphology-based phylogenetic analyses including a selection of all extant family- and subfamily-ranked empidoid clades along with representatives of all extinct Mesozoic genera, were performed using a broad range of analytical methods (maximum parsimony, maximum-likelihood and Bayesian inference). These analyses converged in reconstructing Electrochoreutes as a stem-group representative of the Dolichopodidae, suggesting that complex mating rituals evolved in this lineage during the Cretaceous.


Assuntos
Dípteros , Animais , Masculino , Dípteros/genética , Filogenia , Ecossistema , Teorema de Bayes , Fósseis
2.
J Struct Biol ; 212(3): 107659, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152420

RESUMO

Pineal gland (PG) is a part of the human brain epithalamus that plays an important role in sleep, circadian rhythm, immunity, and reproduction. The calcium deposits and lesions in PG interfere with normal function of the organ and can be associated with different health disorders including serious neurological diseases. At the moment, the detailed mechanisms of PG calcifications and PG lesions formation as well as their involvement in pathological processes are not fully understood. The deep and comprehensive study of the structure of the uncut human PG with histological details, poses a stiff challenge to most imaging techniques, due to low spatial resolution, low visibility or to exceedingly aggressive sample preparation. Here, we investigate the whole uncut and unstained human post-mortem PGs by X-ray phase contrast tomography (XPCT). XPCT is an advanced 3D imaging technique, that permits to study of both soft and calcified tissue of a sample at different scales: from the whole organ to cell structure. In our research we simultaneously resolved 3D structure of parenchyma, vascular network and calcifications. Moreover, we distinguished structural details of intact and degenerated PG tissue. We discriminated calcifications with different structure, pinealocytes nuclei and the glial cells processes. All results were validated by histology. Our research clear demonstrated that XPCT is a potential tool for the high resolution 3D imaging of PG morphological features. This technique opens a new perspective to investigate PG dysfunction and understand the mechanisms of onset and progression of diseases involving the pineal gland.


Assuntos
Calcinose/patologia , Glândula Pineal/patologia , Idoso , Encéfalo/patologia , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Microscopia de Contraste de Fase/métodos , Pessoa de Meia-Idade , Tomografia por Raios X , Raios X
3.
J Synchrotron Radiat ; 27(Pt 4): 1042-1048, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566014

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motor neurons. Pre-clinical studies drive the development of animal models that well mimic ALS disorder and enable both the dissection of disease processes and an early assessment of therapy efficacy. A comprehensive knowledge of neuronal and vascular lesions in the brain and spinal cord is an essential factor to understand the development of the disease. Spatial resolution and bidimensional imaging are important drawbacks limiting current neuroimaging tools, while neuropathology relies on protocols that may alter tissue chemistry and structure. In contrast, recent ex vivo studies in mice demonstrated that X-ray phase-contrast tomography enables study of the 3D distribution of both vasculature and neuronal networks, without sample sectioning or use of staining. Here we present our findings on ex vivo SOD1G93A ALS mice spinal cord at a micrometric scale. An unprecedented direct quantification of neuro-vascular alterations at different stages of the disease is shown.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Modelos Animais de Doenças , Imageamento Tridimensional , Camundongos , Camundongos Transgênicos , Sensibilidade e Especificidade , Razão Sinal-Ruído
4.
Neuroimage ; 184: 490-495, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240904

RESUMO

Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder associated with aberrant production of beta-amyloid (Aß) peptide depositing in brain as amyloid plaques. While animal models allow investigation of disease progression and therapeutic efficacy, technology to fully dissect the pathological mechanisms of this complex disease at cellular and vascular levels is lacking. X-ray phase contrast tomography (XPCT) is an advanced non-destructive 3D multi-scale direct imaging from the cell through to the whole brain, with exceptional spatial and contrast resolution. We exploit XPCT to simultaneously analyse disease-relevant vascular and neuronal networks in AD mouse brain, without sectioning and staining. The findings clearly show the different typologies and internal structures of Aß plaques, together with their interaction with patho/physiological cellular and neuro-vascular microenvironment. XPCT enables for the first time a detailed visualization of amyloid-angiopathy at capillary level, which is impossible to achieve with other approaches. XPCT emerges as added-value technology to explore AD mouse brain as a whole, preserving tissue chemistry and structure, enabling the comparison of physiological vs. pathological states at the level of crucial disease targets. In-vivo translation will permit to monitor emerging therapeutic approaches and possibly shed new light on pathological mechanisms of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos
5.
Cells ; 12(19)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37830629

RESUMO

The proximal caudal vertebrae and notochord in thick-toed geckos (TG) (Chondrodactylus turneri, Gray, 1864) were investigated after a 30-day space flight onboard the biosatellite Bion-M1. This region has not been explored in previous studies. Our research focused on finding sites most affected by demineralization caused by microgravity (G0). We used X-ray phase-contrast tomography to study TG samples without invasive prior preparation to clarify our previous findings on the resistance of TG's bones to demineralization in G0. The results of the present study confirmed that geckos are capable of preserving bone mass after flight, as neither cortical nor trabecular bone volume fraction showed statistically significant changes after flight. On the other hand, we observed a clear decrease in the mineralization of the notochordal septum and a substantial rise in intercentrum volume following the flight. To monitor TG's mineral metabolism in G0, we propose to measure the volume of mineralized tissue in the notochordal septum. This technique holds promise as a sensitive approach to track the demineralization process in G0, given that the volume of calcification within the septum is limited, making it easy to detect even slight changes in mineral content.


Assuntos
Lagartos , Voo Espacial , Animais , Microtomografia por Raio-X , Cóccix , Raios X , Minerais
7.
Sci Rep ; 10(1): 11233, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641715

RESUMO

Visualization and characterization of [Formula: see text]-amyloid deposits is a fundamental task in pre-clinical study of Alzheimer's disease (AD) to assess its evolution and monitor the efficiency of new therapeutic strategies. While the cerebellum is one of the brain areas most underestimated in the context of AD, renewed interest in cerebellar lesions has recently arisen as they may link to motor and cognitive alterations. Thus, we quantitatively investigated three-dimensional plaque morphology in the cerebellum in APP/PS1 transgenic mouse, as a model of AD. In order to obtain a complete high-resolution three-dimensional view of the investigated tissue, we exploited synchrotron X-ray phase contrast tomography (XPCT), providing virtual slices with histology-matching resolution. We found the formation of plaques elongated in shape, and with a specific orientation in space depending on the investigated region of the cerebellar cortex. Remarkably, a similar shape is observed in human cerebellum from demented patients. Our findings demonstrate the capability of XPCT in volumetric quantification, supporting the current knowledge about plaque morphology in the cerebellum and the fundamental role of the surrounding tissue in driving their evolution. A good correlation with the human neuropathology is also reported.


Assuntos
Doença de Alzheimer/diagnóstico , Córtex Cerebelar/patologia , Imageamento Tridimensional , Placa Amiloide/diagnóstico , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Córtex Cerebelar/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/genética , Placa Amiloide/patologia , Presenilina-1/genética , Radiografia , Síncrotrons , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
8.
Front Neurosci ; 14: 584161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240038

RESUMO

We report a qualitative study on central nervous system (CNS) damage that demonstrates the ability of X-ray phase contrast tomography (XPCT) to confirm data obtained with standard 2D methodology and permits the description of additional features that are not detected with 2D or other 3D techniques. In contrast to magnetic resonance or computed tomography, XPCT makes possible the high-resolution 3D imaging of soft tissues classically considered "invisible" to X-rays without the use of additional contrast agents, or without the need for intense processing of the tissue required by 2D techniques. Most importantly for studies of CNS diseases, XPCT enables a concomitant multi-scale 3D biomedical imaging of neuronal and vascular networks ranging from cells through to the CNS as a whole. In the last years, we have used XPCT to investigate neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis (MS), to shed light on brain damage and extend the observations obtained with standard techniques. Here, we show the cutting-edge ability of XPCT to highlight in 3D, concomitantly, vascular occlusions and damages, close associations between plaques and damaged vessels, as well as dramatic changes induced at neuropathological level by treatment in AD mice. We corroborate data on the well-known blood-brain barrier dysfunction in the animal model of MS, experimental autoimmune encephalomyelitis, and further show its extent throughout the CNS axis and at the level of the single vessel/capillary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA