Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(40): E8488-E8497, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923926

RESUMO

Bacterial communities colonize epithelial surfaces of most animals. Several factors, including the innate immune system, mucus composition, and diet, have been identified as determinants of host-associated bacterial communities. Here we show that the early branching metazoan Hydra is able to modify bacterial quorum-sensing signals. We identified a eukaryotic mechanism that enables Hydra to specifically modify long-chain 3-oxo-homoserine lactones into their 3-hydroxy-HSL counterparts. Expression data revealed that Hydra's main bacterial colonizer, Curvibacter sp., responds differentially to N-(3-hydroxydodecanoyl)-l-homoserine lactone (3OHC12-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL). Investigating the impacts of the different N-acyl-HSLs on host colonization elucidated that 3OHC12-HSL allows and 3OC12-HSL represses host colonization of Curvibacter sp. These results show that an animal manipulates bacterial quorum-sensing signals and that this modification leads to a phenotypic switch in the bacterial colonizers. This mechanism may enable the host to manipulate the gene expression and thereby the behavior of its bacterial colonizers.


Assuntos
4-Butirolactona/análogos & derivados , Comamonadaceae/patogenicidade , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Hydra/fisiologia , Percepção de Quorum/efeitos dos fármacos , Simbiose , 4-Butirolactona/farmacologia , Animais , Perfilação da Expressão Gênica , Hydra/efeitos dos fármacos , Hydra/microbiologia , Oxirredutases/metabolismo , Fenótipo , Transdução de Sinais
2.
J R Soc Interface ; 12(108): 20150121, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26236827

RESUMO

Microbial communities display complex population dynamics, both in frequency and absolute density. Evolutionary game theory provides a natural approach to analyse and model this complexity by studying the detailed interactions among players, including competition and conflict, cooperation and coexistence. Classic evolutionary game theory models typically assume constant population size, which often does not hold for microbial populations. Here, we explicitly take into account population growth with frequency-dependent growth parameters, as observed in our experimental system. We study the in vitro population dynamics of the two commensal bacteria (Curvibacter sp. (AEP1.3) and Duganella sp. (C1.2)) that synergistically protect the metazoan host Hydra vulgaris (AEP) from fungal infection. The frequency-dependent, nonlinear growth rates observed in our experiments indicate that the interactions among bacteria in co-culture are beyond the simple case of direct competition or, equivalently, pairwise games. This is in agreement with the synergistic effect of anti-fungal activity observed in vivo. Our analysis provides new insight into the minimal degree of complexity needed to appropriately understand and predict coexistence or extinction events in this kind of microbial community dynamics. Our approach extends the understanding of microbial communities and points to novel experiments.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Consórcios Microbianos/fisiologia , Modelos Biológicos , Animais , Teoria dos Jogos , Hydra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA