Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 85(2): 953-961, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32783233

RESUMO

PURPOSE: To compare cortical gray matter oxygen extraction fraction (OEF) estimated from 2 MRI methods: (1) the quantitative susceptibility mapping (QSM) plus quantitative blood oxygen level dependent imaging (qBOLD) (QSM+qBOLD or QQ), and (2) the dual-gas calibrated-BOLD (DGCB) in healthy subjects; and to investigate the validity of iso-cerebral metabolic rate of oxygen consumption assumption during hypercapnia using QQ. METHODS: In 10 healthy subjects, 3 tesla MRI including a multi-echo gradient echo sequence at baseline and hypercapnia for QQ, as well as an EPI dual-echo pseudo-continuous arterial spin labeling for DGCB, were performed under a hypercapnic and a hyperoxic condition. OEFs from QQ and DGCB were compared using region of interest analysis and paired t test. For QQ, cerebral metabolic rate of oxygen consumption = cerebral blood flow*OEF*arterial oxygen content was generated for both baseline and hypercapnia, which were compared. RESULTS: Average OEF in cortical gray matter across 10 subjects from QQ versus DGCB was 35.5 ± 6.7% versus 38.0 ± 9.1% (P = .49) at baseline and 20.7 ± 4.4% versus 28.4 ± 7.6% (P = .02) in hypercapnia: OEF in cortical gray matter was significantly reduced as measured in QQ (P < .01) and in DGCB (P < .01). Cerebral metabolic rate of oxygen consumption (in µmol O2 /min/100 g) was 168.2 ± 54.1 at baseline from DGCB and was 153.1 ± 33.8 at baseline and 126.4 ± 34.2 (P < .01) in hypercapnia from QQ. CONCLUSION: The differences in OEF obtained from QQ and DGCB are small and nonsignificant at baseline but are statistically significant during hypercapnia. In addition, QQ shows a cerebral metabolic rate of oxygen consumption decrease (17.4%) during hypercapnia.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Substância Cinzenta , Humanos , Oxigênio , Consumo de Oxigênio
2.
Magn Reson Med ; 86(4): 2192-2207, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33956348

RESUMO

PURPOSE: In this work, we propose that Δ B1+ -induced errors in magnetization transfer (MT) saturation (MTsat ) maps can be corrected with use of an R1 and B1+ map and through numerical simulations of the sequence. THEORY AND METHODS: One healthy subject was scanned at 3.0T using a partial quantitative MT protocol to estimate the relationship between observed R1 (R1,obs ) and apparent bound pool size ( M0,appB ) in the brain. MTsat values were simulated for a range of B1+ , R1,obs , and M0,appB . An equation was fit to the simulated MTsat , then a linear relationship between R1,obs and M0,appB was generated. These results were used to generate correction factor maps for the MTsat acquired from single-point data. The proposed correction was compared to an empirical correction factor with different MT-preparation schemes. RESULTS: M0,appB was highly correlated with R1,obs (r > 0.96), permitting the use of R1,obs to estimate M0,appB for B1+ correction. All B1+ corrected MTsat maps displayed a decreased correlation with B1+ compared to uncorrected MTsat and MTsat corrected with an empirical factor in the corpus callosum. There was good agreement between the proposed approach and the empirical correction with radiofrequency saturation at 2 kHz, with larger deviations seen when using saturation pulses further off-resonance and in inhomogeneous (ih) MTsat maps. CONCLUSION: The proposed correction decreases the dependence of MTsat on B1+ inhomogeneities. Furthermore, this flexible framework permits the use of different saturation protocols, making it useful for correcting B1+ inhomogeneities in ihMT.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Ondas de Rádio
3.
Radiol Case Rep ; 14(10): 1233-1236, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31440321

RESUMO

We report on a patient who underwent magnetic resonance guided focused ultrasound (MRgFUS) thalamotomy to treat tremor 3 years after a stereotactic radiosurgery (SRS) thalamotomy. The SRS produced only limited and transient improvements and was associated with a persistent hyperintensity on T2-FLAIR MR images. The MRgFUS thalamotomy was successful, with tremor improvement at 3 months, no adverse effects, and radiological appearance of the MRgFUS lesion similar to other patients undergoing this therapy. We also observed that the SRS-related T2-FLAIR hyperintensity had increased signal intensity 1 day post-MRgFUS, but appeared completely resolved 3 months post-MRgFUS. In conclusion, the case demonstrates that MRgFUS thalamotomy may effectively control tremor in patients with a history of SRS thalamotomy. We also speculate on the potential mechanisms of the apparent resolution of radiation-related change, and discuss possible applications of MRgFUS to reduce persistent SRS-related inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA