Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 19(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29271938

RESUMO

Protein folding factors (chaperones) are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS), have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease.


Assuntos
Chaperonas Moleculares/metabolismo , Músculo Estriado/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Sarcômeros/metabolismo , Animais , Homeostase , Humanos , Dobramento de Proteína , Proteólise , Ubiquitina/metabolismo
2.
Dev Biol ; 390(1): 26-40, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24613615

RESUMO

Despite the prevalence of developmental myopathies resulting from muscle fiber defects, the earliest stages of myogenesis remain poorly understood. Unc45b is a molecular chaperone that mediates the folding of thick-filament myosin during sarcomere formation; however, Unc45b may also mediate specific functions of non-muscle myosins (NMMs). unc45b Mutants have specific defects in striated muscle development, which include myocyte detachment indicative of dysfunctional adhesion complex formation. Given the necessity for non-muscle myosin function in the formation of adhesion complexes and premyofibril templates, we tested the hypothesis that the unc45b mutant phenotype is not mediated solely by interaction with muscle myosin heavy chain (mMHC). We used the advantages of a transparent zebrafish embryo to determine the temporal and spatial patterns of expression for unc45b, non-muscle myosins and mMHC in developing somites. We also examined the formation of myocyte attachment complexes (costameres) in wild-type and unc45b mutant embryos. Our results demonstrate co-expression and co-regulation of Unc45b and NMM in myogenic tissue several hours before any muscle myosin heavy chain is expressed. We also note deficiencies in the localization of costamere components and NMM in unc45b mutants that is consistent with an NMM-mediated role for Unc45b during early myogenesis. This represents a novel role for Unc45b in the earliest stages of muscle development that is independent of muscle mMHC folding.


Assuntos
Costâmeros/genética , Chaperonas Moleculares/genética , Miofibrilas/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Costâmeros/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Microscopia Confocal , Chaperonas Moleculares/metabolismo , Proteínas Musculares , Mutação , Mioblastos/metabolismo , Miofibrilas/metabolismo , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Somitos/embriologia , Somitos/metabolismo , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
Genesis ; 52(10): 833-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25074687

RESUMO

Matrix metalloproteinases (MMPs) are a large and complex family of zinc-dependent endoproteinases widely recognized for their roles in remodeling the extracellular matrix (ECM) during embryonic development, wound healing, and tissue homeostasis. Their misregulation is central to many pathologies, and they have therefore been the focus of biomedical research for decades. These proteases have also recently emerged as mediators of neural development and synaptic plasticity in vertebrates, however, understanding of the mechanistic basis of these roles and the molecular identities of the MMPs involved remains far from complete. We have identified a zebrafish orthologue of mmp25 (a.k.a. leukolysin; MT6-MMP), a membrane-type, furin-activated MMP associated with leukocytes and invasive carcinomas, but which we find is expressed by a subset of the sensory neurons during normal embryonic development. We detect high levels of Mmp25ß expression in the trigeminal, craniofacial, and posterior lateral line ganglia in the hindbrain, and in Rohon-Beard cells in the dorsal neural tube during the first 48 h of embryonic development. Knockdown of Mmp25ß expression with morpholino oligonucleotides results in larvae that are uncoordinated and insensitive to touch, and which exhibit defects in the development of sensory neural structures. Using in vivo zymography, we observe that Mmp25ß morphant embryos show reduced Type IV collagen degradation in regions of the head traversed by elongating axons emanating from the trigeminal ganglion, suggesting that Mmp25ß may play a pivotal role in mediating ECM remodeling in the vicinity of these elongating axons.


Assuntos
Gânglios Sensitivos/enzimologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Células Receptoras Sensoriais/enzimologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Colágeno Tipo IV/metabolismo , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário , Matriz Extracelular/enzimologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Gânglios Sensitivos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Metaloproteinases da Matriz Associadas à Membrana/genética , Especificidade de Órgãos , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
4.
Dev Cell ; 10(4): 531-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16580997

RESUMO

The self-fertile hermaphrodites of C. elegans and C. briggsae evolved from female ancestors by acquiring limited spermatogenesis. Initiation of C. elegans hermaphrodite spermatogenesis requires germline translational repression of the female-promoting gene tra-2, which allows derepression of the three male-promoting fem genes. Cessation of hermaphrodite spermatogenesis requires fem-3 translational repression. We show that C. briggsae requires neither fem-2 nor fem-3 for hermaphrodite development, and that XO Cb-fem-2/3 animals are transformed into hermaphrodites, not females as in C. elegans. Exhaustive screens for Cb-tra-2 suppressors identified another 75 fem-like mutants, but all are self-fertile hermaphrodites rather than females. Control of hermaphrodite spermatogenesis therefore acts downstream of the fem genes in C. briggsae. The outwardly similar hermaphrodites of C. elegans and C. briggsae thus achieve self-fertility via intervention at different points in the core sex determination pathway. These findings are consistent with convergent evolution of hermaphroditism, which is marked by considerable developmental genetic flexibility.


Assuntos
Caenorhabditis/genética , Transtornos do Desenvolvimento Sexual/genética , Polimorfismo Genético , Animais , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2C , Especificidade da Espécie , Espermatogênese/genética
5.
Dev Biol ; 314(2): 287-99, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18190904

RESUMO

The Caenorhabditis elegans UNC-45 protein is required for proper body wall muscle assembly and acts as a molecular co-chaperone for type II myosins. In contrast to other body wall muscle components, UNC-45 is also abundant in the germline and embryo. We show that maternally provided UNC-45 acts with non-muscle myosin II (NMY-2) during embryonic polarity establishment, cytokinesis and germline cellularization. In embryos depleted for UNC-45, myosin contractility is eliminated resulting in embryonic defects in polar body extrusion, cytokinesis and establishment of polarity. Despite a lack of contractility in an unc-45(RNAi) embryo, NMY-2::GFP localizes to the cortex and accumulates at the presumptive cytokinetic furrow indicating that UNC-45 is not required for cortical localization. UNC-45 and NMY-2 are also required for fertility since the lack of either component results in complete sterility due to failed initiation of the cellularization furrows that separate syncytial nuclei into germ cells. In the absence of UNC-45, the actomyosin cytoskeleton does not contract despite non-functional myosin still directly binding actin. UNC-45 has been previously suggested to be required for the folding of the myosin head, and our results refine this hypothesis suggesting that UNC-45 is not required to fold or maintain the actin binding domain but is still required for myosin function.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Embrião não Mamífero/fisiologia , Chaperonas Moleculares/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Interferência de RNA , Espermatozoides/fisiologia , Actinas/metabolismo , Animais , Padronização Corporal/fisiologia , Caenorhabditis elegans/citologia , Desenvolvimento Embrionário/fisiologia , Infertilidade , Infertilidade Masculina , Masculino , Contração Muscular , Miosinas/metabolismo , Miosinas/fisiologia , Dobramento de Proteína
6.
Genetics ; 178(3): 1415-29, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18245372

RESUMO

The nematodes Caenorhabditis elegans and C. briggsae independently evolved self-fertile hermaphroditism from gonochoristic ancestors. C. briggsae has variably divergent orthologs of nearly all genes in the C. elegans sex determination pathway. Their functional characterization has generally relied on reverse genetic approaches, such as RNA interference and cross-species transgene rescue and more recently on deletion mutations. We have taken an unbiased forward mutagenesis approach to isolating zygotic mutations that masculinize all tissues of C. briggsae hermaphrodites. The screens identified loss-of-function mutations in the C. briggsae orthologs of tra-1, tra-2, and tra-3. The somatic and germline phenotypes of these mutations are largely identical to those of their C. elegans homologs, including the poorly understood germline feminization of tra-1(lf) males. This overall conservation of Cb-tra phenotypes is in contrast to the fem genes, with which they directly interact and which are significantly divergent in germline function. In addition, we show that in both C. briggsae and C. elegans large C-terminal truncations of TRA-1 that retain the DNA-binding domain affect sex determination more strongly than somatic gonad development. Beyond these immediate results, this collection of mutations provides an essential foundation for further comparative genetic analysis of the Caenorhabditis sex determination pathway.


Assuntos
Caenorhabditis/genética , Mutação/genética , Processos de Determinação Sexual , Alelos , Animais , Caenorhabditis elegans , Linhagem da Célula , Feminino , Células Germinativas , Gônadas/citologia , Gônadas/crescimento & desenvolvimento , Proteínas de Helminto/isolamento & purificação , Proteínas de Helminto/metabolismo , Masculino , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Fenótipo , Especificidade da Espécie , Zigoto/metabolismo
7.
J Mol Evol ; 54(2): 267-82, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11821919

RESUMO

To investigate the causes and functional significance of rapid sex-determining protein evolution we compared three Caenorhabditis elegans genes encoding members of the protein phosphatase 2C (PP2C) family with their orthologs from another Caenorhabditis species (strain CB5161). One of the genes encodes FEM-2, a sex-determining protein, while the others have no known sex-determining role. FEM-2's PP2C domain was found to be more diverged than the other PP2C domains, supporting the notion that sex-determining proteins are subjected to selective pressures that allow for or cause rapid divergence. Comparison of the positions of amino acid substitutions in FEM-2 with a solved three-dimensional structure suggests that the catalytic face of the protein is highly conserved among C. elegans, CB5161, and another closely related species C. briggsae. However, the non-conserved regions of FEM-2 cannot be said to lack functional importance, since fem-2 transgenes from the other species were unable to rescue the germ-line defect caused by a C. elegans fem-2 mutation. To test whether fem-2 functions as a sex-determining gene in the other Caenorhabditis species we used RNA-mediated interference (RNAi). fem-2 (RNAi) in C. elegans and C. briggsae caused germ-line feminization, but had no noticeable effect in CB5161. Thus the function of fem-2 in CB5161 remains uncertain.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis/enzimologia , Caenorhabditis/genética , Evolução Molecular , Variação Genética , Fosfoproteínas Fosfatases/genética , Processos de Determinação Sexual , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/metabolismo , Domínio Catalítico , Sequência Conservada , Transtornos do Desenvolvimento Sexual/genética , Regulação Enzimológica da Expressão Gênica , Genoma/genética , Células Germinativas , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mapeamento por Restrição , Alinhamento de Sequência , Peixe-Zebra/genética
8.
Bioessays ; 25(3): 221-31, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12596226

RESUMO

The pathway that controls sexual fate in the nematode Caenorhabditis elegans has been well characterized at the molecular level. By identifying differences between the sex-determination mechanisms in C. elegans and other nematode species, it should be possible to understand how complex sex-determining pathways evolve. Towards this goal, orthologues of many of the C. elegans sex regulators have been isolated from other members of the genus Caenorhabditis. Rapid sequence evolution is observed in every case, but several of the orthologues appear to have conserved sex-determining roles. Thus extensive sequence divergence does not necessarily coincide with changes in pathway structure, although the same forces may contribute to both. This review summarizes recent findings and, with reference to results from other animals, offers explanations for why sex-determining genes and pathways appear to be evolving rapidly. Experimental strategies that hold promise for illuminating pathway differences between nematodes are also discussed.


Assuntos
Processos de Determinação Sexual , Animais , Caenorhabditis elegans , Evolução Molecular , Feminino , Masculino , Modelos Genéticos , Interferência de RNA , Especificidade da Espécie
9.
Science ; 302(5647): 1046-9, 2003 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-14605370

RESUMO

In Caenorhabditis elegans the two sexes, hermaphrodites and males, are thought to be irreversibly determined at fertilization by the ratio of X chromosomes to sets of autosomes: XX embryos develop as hermaphrodites and XO embryos as males. We show instead that both sex and genotype of C. elegans can be altered postembryonically and that this flexibility requires sexual reproduction. When grown in specific bacterial metabolites, some XX larvae generated by mating males and hermaphrodites develop as males and lose one X chromosome. However, XX larvae produced by hermaphrodite self-fertilization show no such changes. We propose that sexual reproduction increases developmental flexibility of progeny, allowing for better adaptation to changing environments.


Assuntos
Caenorhabditis elegans/fisiologia , Processos de Determinação Sexual , Adaptação Fisiológica , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Meios de Cultivo Condicionados , Transtornos do Desenvolvimento Sexual , Meio Ambiente , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Genótipo , Masculino , Fenótipo , Reprodução , Razão de Masculinidade , Comportamento Sexual Animal , Transgenes , Cromossomo X
10.
J Cell Sci ; 117(Pt 22): 5313-21, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15454571

RESUMO

The Caenorhabditis elegans UNC-45 protein contains tetratricopeptide repeats and a domain with similarity to fungal proteins, and it differentially colocalizes with myosin heavy chain B in the body wall muscles of adult worms. Although it is essential for normal myosin filament assembly in body wall muscle development, strong mutants show a previously unexplained maternal effect. We show here that the UNC-45 protein is maternally contributed and is present in all cells of the early embryo whereas zygotic UNC-45 expression is only detected in the developing muscle cells. Embryos produced from adults with reduced germline expression of UNC-45 exhibit cytokinesis defects suggesting that UNC-45 has a novel role in the early embryo in addition to muscle development. Yeast two-hybrid screens show that UNC-45 can directly interact with NMY-2, a non-muscle type II myosin, and UNC-45 and NMY-2 colocalize at cell boundaries in early embryos. Localization of UNC-45 at these boundaries is dependent upon the presence of NMY-2. Our results suggest that UNC-45 interacts with more than one type of myosin and functions in the embryo to regulate cytoplasmic myosin assembly and/or stability during cytokinesis.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Chaperonas Moleculares/fisiologia , Miosinas/biossíntese , Actinas/química , Animais , Sítios de Ligação , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , DNA Complementar/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Homozigoto , Microscopia de Fluorescência , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Músculos/citologia , Cadeias Pesadas de Miosina/fisiologia , Miosinas/química , Estrutura Terciária de Proteína , Interferência de RNA , Transgenes , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA