Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993242

RESUMO

Phase transitions of cellular proteins and lipids play a key role in governing the organisation and coordination of intracellular biology. The frequent juxtaposition of proteinaceous biomolecular condensates to cellular membranes raises the intriguing prospect that phase transitions in proteins and lipids could be co-regulated. Here we investigate this possibility in the ribonucleoprotein (RNP) granule-ANXA11-lysosome ensemble, where ANXA11 tethers RNP granule condensates to lysosomal membranes to enable their co-trafficking. We show that changes to the protein phase state within this system, driven by the low complexity ANXA11 N-terminus, induce a coupled phase state change in the lipids of the underlying membrane. We identify the ANXA11 interacting proteins ALG2 and CALC as potent regulators of ANXA11-based phase coupling and demonstrate their influence on the nanomechanical properties of the ANXA11-lysosome ensemble and its capacity to engage RNP granules. The phenomenon of protein-lipid phase coupling we observe within this system offers an important template to understand the numerous other examples across the cell whereby biomolecular condensates closely juxtapose cell membranes.

2.
J Phys Chem Lett ; 13(30): 7058-7064, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35900133

RESUMO

Protein aggregation into amyloid fibrils has been observed in several pathological conditions and exploited in nanotechnology. It is also key in several biochemical processes. In this work, we show that ionic liquids (ILs), a vast class of organic electrolytes, can finely tune amyloid properties, opening a new landscape in basic science and applications. The representative case of ethylammonium nitrate (EAN) and tetramethyl-guanidinium acetate (TMGA) ILs on lysozyme is considered. First, atomic force microscopy has shown that the addition of EAN and TMGA leads to thicker and thinner amyloid fibrils of greater and lower electric potential, respectively, with diameters finely tunable by IL concentration. Optical tweezers and neutron scattering have shed light on their mechanism of action. TMGA interacts with the protein hydration layer only, making the relaxation dynamics of these water molecules faster. EAN interacts directly with the protein instead, making it mechanically unstable and slowing down its relaxation dynamics.


Assuntos
Líquidos Iônicos , Acetatos , Amiloide/química , Antivirais , Guanidina , Líquidos Iônicos/química , Muramidase/química , Compostos de Amônio Quaternário
3.
Biophys Rev ; 12(5): 1187-1215, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32936423

RESUMO

Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of "ILs, biomolecules, and cells."

4.
J Phys Chem Lett ; 11(17): 7327-7333, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32794718

RESUMO

Cell migration is a universal and crucial mechanism for life. It is required in a series of physiological processes, in wound repair and immune response and is involved in several pathological conditions, including cancer and virus dissemination. Among the several biochemical and biophysical routes, changing cell membrane elasticity holds the promise to be a universal strategy to alter cell mobility. Due to their affinity with cell membranes, ionic liquids (ILs) may play an important role. This work focuses on the effect of subtoxic amounts of imidazolium-ILs on the migration of the model cancer cell line MDA-MB-231. Here we show that ILs are able to enhance cell mobility by reducing the elasticity of the cellular lipid membrane, and that both mobility and elasticity can be tuned by IL-concentration and IL-cation chain length. This biochemical-physical mechanism is potentially valid for all mammalian cells, and its impact in bionanomedicine and bionanotechnology is discussed.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Líquidos Iônicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Líquidos Iônicos/química
5.
Biophys Rev ; 10(3): 847-852, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29725930

RESUMO

Ionic liquids (ILs) are a vast class of organic non-aqueous electrolytes whose interaction with biomolecules is receiving great attention for potential applications in bio-nano-technology. Recently, it has been shown that ILs can affect protein amyloidogenesis. Whereas some ILs favour the aggregation of proteins into amyloids, others inhibit their formation. Moreover, ILs can dissolve mature fibrils and restore the protein biochemical function. In this letter, we present a brief state-of-the-art summary of this emerging field that holds the promise of important developments both in basic science and in applications from bio-medicine to material science, and bio-nano-technology. The huge variety of ILs offers a vast playground for future studies and potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA