Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243866

RESUMO

Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.


Assuntos
Adaptação Biológica , Hordeum , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Domesticação
2.
Theor Appl Genet ; 137(5): 115, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691245

RESUMO

KEY MESSAGE: This study found that the genes, PPD-H1 and ELF3, control the acceleration of plant development under speed breeding, with important implications for optimizing the delivery of climate-resilient crops. Speed breeding is a tool to accelerate breeding and research programmes. Despite its success and growing popularity with breeders, the genetic basis of plant development under speed breeding remains unknown. This study explored the developmental advancements of barley genotypes under different photoperiod regimes. A subset of the HEB-25 Nested Association Mapping population was evaluated for days to heading and maturity under two contrasting photoperiod conditions: (1) Speed breeding (SB) consisting of 22 h of light and 2 h of darkness, and (2) normal breeding (NB) consisting of 16 h of light and 8 h of darkness. GWAS revealed that developmental responses under both conditions were largely controlled by two loci: PPDH-1 and ELF3. Allelic variants at these genes determine whether plants display early flowering and maturity under both conditions. At key QTL regions, domesticated alleles were associated with late flowering and maturity in NB and early flowering and maturity in SB, whereas wild alleles were associated with early flowering under both conditions. We hypothesize that this is related to the dark-dependent repression of PPD-H1 by ELF3 which might be more prominent in NB conditions. Furthermore, by comparing development under two photoperiod regimes, we derived an estimate of plasticity for the two traits. Interestingly, plasticity in development was largely attributed to allelic variation at ELF3. Our results have important implications for our understanding and optimization of speed breeding protocols particularly for introgression breeding and the design of breeding programmes to support the delivery of climate-resilient crops.


Assuntos
Genótipo , Hordeum , Fenótipo , Fotoperíodo , Melhoramento Vegetal , Locos de Características Quantitativas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Alelos , Flores/crescimento & desenvolvimento , Flores/genética , Mapeamento Cromossômico , Genes de Plantas , Polimorfismo de Nucleotídeo Único , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Exp Bot ; 74(9): 2912-2931, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36449391

RESUMO

Increase in ambient temperatures caused by climate change affects various morphological and developmental traits of plants, threatening crop yield stability. In the model plant Arabidopsis thaliana, EARLY FLOWERING 3 (ELF3) plays prominent roles in temperature sensing and thermomorphogenesis signal transduction. However, how crop species respond to elevated temperatures is poorly understood. Here, we show that the barley ortholog of AtELF3 interacts with high temperature to control growth and development. We used heterogeneous inbred family (HIF) pairs generated from a segregating mapping population and systematically studied the role of exotic ELF3 variants in barley temperature responses. An exotic ELF3 allele of Syrian origin promoted elongation growth in barley at elevated temperatures, whereas plant area and estimated biomass were drastically reduced, resulting in an open canopy architecture. The same allele accelerated inflorescence development at high temperature, which correlated with early transcriptional induction of MADS-box floral identity genes BM3 and BM8. Consequently, barley plants carrying the exotic ELF3 allele displayed stable total grain number at elevated temperatures. Our findings therefore demonstrate that exotic ELF3 variants can contribute to phenotypic and developmental acclimation to elevated temperatures, providing a stimulus for breeding of climate-resilient crops.


Assuntos
Arabidopsis , Hordeum , Temperatura , Alelos , Melhoramento Vegetal , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Flores/genética
4.
J Exp Bot ; 74(12): 3630-3650, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37010230

RESUMO

EARLY FLOWERING 3 (ELF3) is an important regulator of various physiological and developmental processes and hence may serve to improve plant adaptation which will be essential for future plant breeding. To expand the limited knowledge on barley ELF3 in determining agronomic traits, we conducted field studies with heterogeneous inbred families (HIFs) derived from selected lines of the wild barley nested association mapping population HEB-25. During two growing seasons, phenotypes of nearly isogenic HIF sister lines, segregating for exotic and cultivated alleles at the ELF3 locus, were compared for 10 developmental and yield-related traits. We determine novel exotic ELF3 alleles and show that HIF lines, carrying the exotic ELF3 allele, accelerated plant development compared with the cultivated ELF3 allele, depending on the genetic background. Remarkably, the most extreme effects on phenology could be attributed to one exotic ELF3 allele differing from the cultivated Barke ELF3 allele in only one single nucleotide polymorphism (SNP). This SNP causes an amino acid substitution (W669G), which as predicted has an impact on the protein structure of ELF3. Consequently, it may affect phase separation behaviour and nano-compartment formation of ELF3 and, potentially, also its local cellular interactions causing significant trait differences between HIF sister lines.


Assuntos
Hordeum , Locos de Características Quantitativas , Mapeamento Cromossômico , Hordeum/genética , Alelos , Melhoramento Vegetal , Desenvolvimento Vegetal
5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232362

RESUMO

Increased salinity is one of the major consequences of climatic change affecting global crop production. The early stages in the barley (Hordeum vulgare L.) life cycle are considered the most critical phases due to their contributions to final crop yield. Particularly, the germination and seedling development are sensitive to numerous environmental stresses, especially soil salinity. In this study, we aimed to identify SNP markers linked with germination and seedling development at 150 mM NaCl as a salinity treatment. We performed a genome-wide association study (GWAS) using a panel of 208 intermedium-spike barley (H. vulgare convar. intermedium (Körn.) Mansf.) accessions and their genotype data (i.e., 10,323 SNPs) using the genome reference sequence of "Morex". The phenotypic results showed that the 150 mM NaCl salinity treatment significantly reduced all recorded germination and seedling-related traits compared to the control treatment. Furthermore, six accessions (HOR 11747, HOR 11718, HOR 11640, HOR 11256, HOR 11275 and HOR 11291) were identified as the most salinity tolerant from the intermedium-spike barley collection. GWAS analysis indicated that a total of 38 highly significantly associated SNP markers under control and/or salinity traits were identified. Of these, two SNP markers on chromosome (chr) 1H, two on chr 3H, and one on chr 4H were significantly linked to seedling fresh and dry weight under salinity stress treatment. In addition, two SNP markers on chr 7H were also significantly associated with seedling fresh and dry weight but under control condition. Under salinity stress, one SNP marker on chr 1H, 5H and 7H were detected for more than one phenotypic trait. We found that in most of the accessions exhibiting the highest salinity tolerance, most of the salinity-related QTLs were presented. These results form the basis for detailed studies, leading to improved salt tolerance breeding programs in barley.


Assuntos
Hordeum , Estudo de Associação Genômica Ampla , Germinação/genética , Hordeum/genética , Melhoramento Vegetal , Tolerância ao Sal/genética , Plântula/genética , Cloreto de Sódio/farmacologia , Solo
6.
New Phytol ; 230(5): 1787-1801, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33595846

RESUMO

Circadian clock rhythms are shown to be intertwined with crop adaptation. To realize the adaptive value of changes in these rhythms under crop domestication and improvement, there is a need to compare the genetics of clock and yield traits. We compared circadian clock rhythmicity based on Chl leaf fluorescence and transcriptomics among wild ancestors, landraces, and breeding lines of barley under optimal and high temperatures. We conducted a genome scan to identify pleiotropic loci regulating the clock and field phenotypes. We also compared the allelic diversity in wild and cultivated barley to test for selective sweeps. We found significant loss of thermal plasticity in circadian rhythms under domestication. However, transcriptome analysis indicated that this loss was only for output genes and that temperature compensation in the core clock machinery was maintained. Drivers of the circadian clock (DOC) loci were identified via genome-wide association study. Notably, these loci also modified growth and reproductive outputs in the field. Diversity analysis indicated selective sweep in these pleiotropic DOC loci. These results indicate a selection against thermal clock plasticity under barley domestication and improvement and highlight the importance of identifying genes underlying for understanding the biochemical basis of crop adaptation to changing environments.


Assuntos
Relógios Circadianos , Hordeum , Relógios Circadianos/genética , Ritmo Circadiano/genética , Domesticação , Estudo de Associação Genômica Ampla , Hordeum/genética , Melhoramento Vegetal
7.
Plant Cell Environ ; 44(1): 323-338, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33037636

RESUMO

Downy mildew in hop (Humulus lupulus L.) is caused by Pseudoperonospora humuli and generates significant losses in quality and yield. To identify the biochemical processes that confer natural downy mildew resistance (DMR), a metabolome- and genome-wide association study was performed. Inoculation of a high density genotyped F1 hop population (n = 192) with the obligate biotrophic oomycete P. humuli led to variation in both the levels of thousands of specialized metabolites and DMR. We observed that metabolites of almost all major phytochemical classes were induced 48 hr after inoculation. But only a small number of metabolites were found to be correlated with DMR and these were enriched with phenylpropanoids. These metabolites were also correlated with DMR when measured from the non-infected control set. A genome-wide association study revealed co-localization of the major DMR loci and the phenylpropanoid pathway markers indicating that the major contribution to resistance is mediated by these metabolites in a heritable manner. The application of three putative prophylactic phenylpropanoids led to a reduced degree of leaf infection in susceptible genotypes, confirming their protective activity either directly or as precursors of active compounds.


Assuntos
Resistência à Doença/genética , Humulus/imunologia , Oomicetos , Peronospora , Cromatografia Gasosa-Espectrometria de Massas , Humulus/genética , Humulus/metabolismo , Humulus/microbiologia , Folhas de Planta/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Plântula/imunologia , Plântula/microbiologia
8.
Plant Cell Environ ; 44(10): 3445-3458, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212402

RESUMO

Aegilops tauschii, the progenitor of the wheat D genome, contains extensive diversity for biotic and abiotic resistance. Lr21 is a leaf rust resistance gene, which did not enter the initial gene flow from Ae. tauschii into hexaploid wheat due to restrictive hybridization events. Here, we used population genetics and high-resolution comparative genomics to study evolutionary and functional divergence of Lr21 in diploid and hexaploid wheats. Population genetics identified the original Lr21, lr21-1 and lr21-2 alleles and their evolutionary history among Ae. tauschii accessions. Comparative genetics of Lr21 variants between Ae. tauschii and cultivated genotypes suggested at least two independent polyploidization events in bread wheat evolution. Further, a recent re-birth of a unique Lr21-tbk allele and its neofunctionalization was discovered in the hexaploid wheat cv. Tobak. Altogether, four independent alleles were investigated and validated for leaf rust resistance in diploid, synthetic hexaploid and cultivated wheat backgrounds. Besides seedling resistance, we uncover a new role of the Lr21 gene in conferring an adult plant field resistance. Seedling and adult plant resistance turned out to be correlated with developmentally dependent variation in Lr21 expression. Our results contribute to understand Lr21 evolution and its role in establishing a broad-spectrum leaf rust resistance in wheat.


Assuntos
Aegilops/genética , Evolução Molecular , Genes de Plantas , Doenças das Plantas/genética , Resistência à Doença/genética , Hormônio do Crescimento Humano , Doenças das Plantas/microbiologia
9.
J Exp Bot ; 72(18): 6305-6318, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34145452

RESUMO

A multilocus genome-wide association study of a panel of 369 diverse wheat (Triticum aestivum) genotypes was carried out in order to examine the genetic basis of variations in nutrient mineral concentrations in the grains. The panel was grown under field conditions for three consecutive years and the concentrations of Ca, K, Mg, Mn, P, and S were determined. Wide ranges of natural variation were detected among the genotypes. Strong positive correlations were found among the minerals except for K, which showed negative correlation trends with the other minerals. Genetic association analysis detected 86 significant marker-trait associations (MTAs) underlying the natural variations in mineral concentrations in grains. The major MTA was detected on the long arm of chromosome 5A and showed a pleiotropic effect on Ca, K, Mg, Mn, and S. Further significant MTAs were distributed among the whole genome except for chromosomes 3D and 6D. We identified putative candidate genes that are potentially involved in metal uptake, transport, and assimilation, including TraesCS5A02G542600 on chromosome 5A, which was annotated as a Major Facilitator Superfamily transporter and acted on all the minerals except K. TraesCS5A02G542600 was highly expressed in seed coat, and to a lesser extent in the peduncle, awns, and lemma. Our results provide important insights into the genetic basis of enhancement of nutrient mineral concentrations that can help to inform future breeding studies in order to improve human nutrition.


Assuntos
Minerais , Triticum , Estudos de Associação Genética , Nutrientes , Valor Nutritivo , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética
10.
BMC Genomics ; 21(1): 837, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246416

RESUMO

BACKGROUND: Barley scald, caused by the fungus Rhynchosporium commune, is distributed worldwide to all barley growing areas especially in cool and humid climates. Scald is an economically important leaf disease resulting in yield losses of up to 40%. To breed resistant cultivars the identification of quantitative trait loci (QTLs) conferring resistance to scald is necessary. Introgressing promising resistance alleles of wild barley is a way to broaden the genetic basis of scald resistance in cultivated barley. Here, we apply nested association mapping (NAM) to map resistance QTLs in the barley NAM population HEB-25, comprising 1420 lines in BC1S3 generation, derived from crosses of 25 wild barley accessions with cv. Barke. RESULTS: In scald infection trials in the greenhouse variability of resistance across and within HEB-25 families was found. NAM based on 33,005 informative SNPs resulted in the identification of eight reliable QTLs for resistance against scald with most wild alleles increasing resistance as compared to cv. Barke. Three of them are located in the region of known resistance genes and two in the regions of QTLs, respectively. The most promising wild allele was found at Rrs17 in one specific wild donor. Also, novel QTLs with beneficial wild allele effects on scald resistance were detected. CONCLUSIONS: To sum up, wild barley represents a rich resource for scald resistance. As the QTLs were linked to the physical map the identified candidate genes will facilitate cloning of the scald resistance genes. The closely linked flanking molecular markers can be used for marker-assisted selection of the respective resistance genes to integrate them in elite cultivars.


Assuntos
Hordeum , Doenças das Plantas/genética , Locos de Características Quantitativas , Ascomicetos/patogenicidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Resistência à Doença/genética , Hordeum/genética , Hordeum/microbiologia , Melhoramento Vegetal , Doenças das Plantas/microbiologia
11.
New Phytol ; 228(6): 1852-1863, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32659029

RESUMO

Meiotic recombination rates vary considerably between species, populations and individuals. The genetic exchange between homologous chromosomes plays a major role in evolution by breaking linkage between advantageous and deleterious alleles in the case of introgressions. Identifying recombination rate modifiers is thus of both fundamental and practical interest to understand and utilize variation in meiotic recombination rates. We investigated recombination rate variation in a large intraspecific hybrid population (named HEB-25) derived from a cross between domesticated barley and 25 wild barley accessions. We observed quantitative variation in total crossover number with a maximum of a 1.4-fold difference between subpopulations and increased recombination rates across pericentromeric regions. The meiosis-specific α-kleisin cohesin subunit REC8 was identified as a candidate gene influencing crossover number and patterning. Furthermore, we quantified wild barley introgression patterns and revealed how local and genome-wide recombination rate variation shapes patterns of introgression. The identification of allelic variation in REC8 in combination with the observed changes in crossover patterning suggest a difference in how chromatin loops are tethered to the chromosome axis, resulting in reduced crossover suppression across pericentromeric regions. Local and genome-wide recombination rate variation is shaping patterns of introgressions and thereby directly influences the consequences of linkage drag.


Assuntos
Hordeum , Ligação Genética , Genoma , Hordeum/genética , Meiose/genética , Recombinação Genética/genética
12.
BMC Plant Biol ; 19(1): 134, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971212

RESUMO

BACKGROUND: Barley (Hordeum vulgare L.) is the fourth most important cereal crop worldwide. Barley production is compromised by many abiotic stresses including drought. Wild barley is a valuable source of alleles that can improve adaptation of cultivated barley to drought stress. RESULTS: In the present study, a nested association mapping population named HEB-25, consisting of 1420 BC1S3 lines that were developed by crossing 25 different wild barley accessions to the elite barley cultivar 'Barke', was evaluated under both control and drought-stressed conditions in the Australian Plant Phenomics Facility, University of Adelaide. Overall, 14 traits reflecting the performance of individual plants in each treatment were calculated from non-destructive imaging over time and destructive end-of-experiment measurements. For each trait, best linear unbiased estimators (BLUEs) were calculated and used for genome-wide association study (GWAS) analysis. Among the quantitative trait loci (QTL) identified for the 14 traits, many co-localise with known inflorescence and developmental genes. We identified a QTL on chromosome 4H where, under drought and control conditions, wild barley alleles increased biomass by 10 and 17% respectively compared to the Barke allele. CONCLUSIONS: Across all traits, QTL which increased phenotypic values were identified, providing a wider range of genetic diversity for the improvement of drought tolerance in barley.


Assuntos
Adaptação Fisiológica , Estudo de Associação Genômica Ampla , Hordeum/genética , Locos de Características Quantitativas/genética , Alelos , Secas , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Fenótipo , Estresse Fisiológico
13.
Plant Physiol ; 178(2): 771-782, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131422

RESUMO

Water scarcity is a critical threat to global crop production. Here, we used the natural diversity of barley (Hordeum vulgare) to dissect the genetic control of proline (Pro) mediated drought stress adaptation. Genetic mapping and positional cloning of a major drought-inducible quantitative trait locus (QPro.S42-1H) revealed unique allelic variation in pyrroline-5-carboxylate synthase (P5cs1) between the cultivated cultivar Scarlett (ssp. vulgare) and the wild barley accession ISR42-8 (ssp. spontaneum). The putative causative mutations were located in the promoter of P5cs1 across the DNA binding motifs for abscisic acid-responsive element binding transcription factors. Introgression line (IL) S42IL-143 carrying the wild allele of P5cs1 showed significant up-regulation of P5cs1 expression compared to Scarlett, which was consistent with variation in Pro accumulation under drought. Next, we transiently expressed promoter::reporter constructs of ISR42-8 and Scarlett alleles in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. GUS expression analysis showed a significantly higher activation of the ISR42-8 promoter compared to Scarlett upon abscisic acid treatment. Notably, the ISR42-8 promoter activity was impaired in protoplasts isolated from the loss-of-function abf1abf2abf3abf4 quadruple mutant. A series of phenotypic evaluations demonstrated that S42IL-143 maintained leaf water content and photosynthetic activity longer than Scarlett under drought. These findings suggest that the ancestral variant of P5cs1 has the potential for drought tolerance and understanding drought physiology of barley and related crops.


Assuntos
Arabidopsis/genética , Hordeum/enzimologia , Prolina/metabolismo , Pirróis/metabolismo , Locos de Características Quantitativas/genética , Água/metabolismo , Adaptação Fisiológica , Alelos , Arabidopsis/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Secas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
14.
BMC Genomics ; 19(1): 559, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064354

RESUMO

BACKGROUND: Multi-parent advanced generation intercross (MAGIC) populations are a newly established tool to dissect quantitative traits. We developed the high resolution MAGIC wheat population WM-800, consisting of 910 F4:6 lines derived from intercrossing eight recently released European winter wheat cultivars. RESULTS: Genotyping WM-800 with 7849 SNPs revealed a low mean genetic similarity of 59.7% between MAGIC lines. WM-800 harbours distinct genomic regions exposed to segregation distortion. These are mainly located on chromosomes 2 to 6 of the wheat B genome where founder specific DNA segments were positively or negatively selected. This suggests adaptive selection of individual founder alleles during population development. The application of a genome-wide association study identified 14 quantitative trait loci (QTL) controlling plant height in WM-800, including the known semi-dwarf genes Rht-B1 and Rht-D1 and a potentially novel QTL on chromosome 5A. Additionally, epistatic effects controlled plant height. For example, two loci on chromosomes 2B and 7B gave rise to an additive epistatic effect of 13.7 cm. CONCLUSION: The present study demonstrates that plant height in the MAGIC-WHEAT population WM-800 is mainly determined by large-effect QTL and di-genic epistatic interactions. As a proof of concept, our study confirms that WM-800 is a valuable tool to dissect the genetic architecture of important agronomic traits.


Assuntos
Epistasia Genética , Regulação da Expressão Gênica de Plantas , Triticum/genética , Cruzamentos Genéticos , Efeito Fundador , Frequência do Gene , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/anatomia & histologia
15.
BMC Genomics ; 19(1): 409, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843596

RESUMO

BACKGROUND: Understanding the genetic basis of frost tolerance (FT) in wheat (Triticum aestivum L.) is essential for preventing yield losses caused by frost due to cellular damage, dehydration and reduced metabolism. FT is a complex trait regulated by a number of genes and several gene families. Availability of the wheat genomic sequence opens new opportunities for exploring candidate genes diversity for FT. Therefore, the objectives of this study were to identity SNPs and insertion-deletion (indels) in genes known to be involved in frost tolerance and to perform association genetics analysis of respective SNPs and indels on FT. RESULTS: Here we report on the sequence analysis of 19 candidate genes for FT in wheat assembled using the Chinese Spring IWGSC RefSeq v1.0. Out of these, the tandem duplicated C-repeat binding factors (CBF), i.e. CBF-A3, CBF-A5, CBF-A10, CBF-A13, CBF-A14, CBF-A15, CBF-A18, the vernalisation response gene VRN-A1, VRN-B3, the photoperiod response genes PPD-B1 and PPD-D1 revealed association to FT in 235 wheat cultivars. Within six genes (CBF-A3, CBF-A15, VRN-A1, VRN-B3, PPD-B1 and PPD-D1) amino acid (AA) substitutions in important protein domains were identified. The amino acid substitution effect in VRN-A1 on FT was confirmed and new AA substitutions in CBF-A3, CBF-A15, VRN-B3, PPD-B1 and PPD-D1 located at highly conserved sites were detected. Since these results rely on phenotypic data obtained at five locations in 2 years, detection of significant associations of FT to AA changes in CBF-A3, CBF-A15, VRN-A1, VRN-B3, PPD-B1 and PPD-D1 may be exploited in marker assisted breeding for frost tolerance in winter wheat. CONCLUSIONS: A set of 65 primer pairs for the genes mentioned above from a previous study was BLASTed against the IWGSC RefSeq resulting in the identification of 39 primer combinations covering the full length of 19 genes. This work demonstrates the usefulness of the IWGSC RefSeq in specific primer development for highly conserved gene families in hexaploid wheat and, that a candidate gene association genetics approach based on the sequence data is an efficient tool to identify new alleles of genes important for the response to abiotic stress in wheat.


Assuntos
Substituição de Aminoácidos , Sequência Conservada , Proteínas de Plantas/genética , Triticum/genética , Temperatura Baixa , Haplótipos , Mutação INDEL , Desequilíbrio de Ligação , Fenótipo , Proteínas de Plantas/química , Polimorfismo de Nucleotídeo Único , Triticum/fisiologia
16.
J Exp Bot ; 69(7): 1765-1779, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29365127

RESUMO

Increasing crop productivity under conditions of climate change requires the identification, selection, and utilization of novel alleles for breeding. In this study, we analysed the genotype and field phenotype of the barley HEB-25 multi-parent mapping population under well-watered and water-limited environments for two years. A genome-wide association study (GWAS) for genotype × environment interactions was performed for 10 traits including flowering time (heading time, HEA) and plant grain yield (PGY). Comparison of the GWAS for traits per se (i.e. regardless of the environment) with a study for quantitative trait loci (QTLs) × environment interactions (Q×E), indicates the prevalence of Q×E mostly for reproductive traits. One Q×E locus on chromosome 2, Hordeum spontaneum Dry2.2 (HsDry2.2), showed a positive and conditional effect on PGY and grain number (GN). The wild allele significantly reduced HEA; however, this earliness was not conditioned by water deficit. Furthermore, BC2F1 lines segregating for the HsDry2.2 locus showed that the wild allele conferred an advantage over the cultivated allele in PGY, GN, and harvest index, as well as modified shoot morphology, a longer grain-filling period, and reduced senescence (only under drought). This suggests the presence of an adaptation mechanism against water deficit rather than an escape mechanism. The study highlights the value of evaluating wild relatives in search of novel alleles and provides clues to resilience mechanisms underlying crop adaptations to abiotic stress.


Assuntos
Secas , Grão Comestível/fisiologia , Flores/fisiologia , Estudo de Associação Genômica Ampla , Hordeum/fisiologia , Interação Gene-Ambiente , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Fenótipo , Locos de Características Quantitativas
17.
J Exp Bot ; 69(16): 3811-3822, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29767798

RESUMO

To explore wild barley as a source of useful alleles for yield improvement in breeding, we have carried out a genome-wide association scan using the nested association mapping population HEB-25, which contains 25 diverse exotic barley genomes superimposed on an ~70% genetic background of cultivated barley. A total of 1420 HEB-25 lines were trialled for nine yield-related grain traits for 2 years in Germany and Scotland, with varying N fertilizer application. The phenotypic data were related to genotype scores for 5398 gene-based single nucleotide polymorphism (SNP) markers. A total of 96 quantitative trait locus (QTL) regions were identified across all measured traits, the majority of which co-localize with known major genes controlling flowering time (Ppd-H2, HvCEN, HvGI, VRN-H1, and VRN-H3) and spike morphology (VRS3, VRS1, VRS4, and INT-C) in barley. Fourteen QTL hotspots, with at least three traits coinciding, were also identified, several of which co-localize with barley orthologues of genes controlling grain dimensions in rice. Most of the allele effects are specific to geographical location and/or exotic parental genotype. This study shows the existence of beneficial alleles for yield-related traits in exotic barley germplasm and provides candidate alleles for future improvement of these traits by the breeder.


Assuntos
Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Hordeum/genética , Melhoramento Vegetal , Grão Comestível/genética , Fertilizantes , Nitrogênio , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
18.
J Exp Bot ; 69(7): 1517-1531, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361127

RESUMO

Barley is cultivated more widely than the other major world crops because it adapts well to environmental constraints, such as drought, heat, and day length. To better understand the genetic control of local adaptation in barley, we studied development in the nested association mapping population HEB-25, derived from crossing 25 wild barley accessions with the cultivar 'Barke'. HEB-25 was cultivated in replicated field trials in Dundee (Scotland) and Halle (Germany), differing in regard to day length, precipitation, and temperature. Applying a genome-wide association study, we located 60 and 66 quantitative trait locus (QTL) regions regulating eight plant development traits in Dundee and Halle, respectively. A number of QTLs could be explained by known major genes such as PHOTOPERIOD 1 (Ppd-H1) and FLOWERING LOCUS T (HvFT-1) that regulate plant development. In addition, we observed that developmental traits in HEB-25 were partly controlled via genotype × environment and genotype × donor interactions, defined as location-specific and family-specific QTL effects. Our findings indicate that QTL alleles are available in the wild barley gene pool that show contrasting effects on plant development, which may be deployed to improve adaptation of cultivated barley to future environmental changes.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Mudança Climática , Meio Ambiente , Alemanha , Proteínas de Plantas/metabolismo , Escócia
19.
Int J Mol Sci ; 20(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585193

RESUMO

Malnutrition of iron (Fe) affects two billion people worldwide. Therefore, enhancing grain Fe concentration (GFeC) in wheat (Triticum aestivum L.) is an important goal for breeding. Here we study the genetic factors underlying GFeC trait by genome-wide association studies (GWAS) and the prediction abilities using genomic prediction (GP) in a panel of 369 European elite wheat varieties which was genotyped with 15,523 mapped single-nucleotide polymorphism markers (SNP) and a subpanel of 183 genotypes with 44,233 SNP markers. The resulting means of GFeC from three field experiments ranged from 24.42 to 52.42 µg·g-1 with a broad-sense heritability (H²) equaling 0.59 over the years. GWAS revealed 41 and 137 significant SNPs in the whole and subpanel, respectively, including significant marker-trait associations (MTAs) for best linear unbiased estimates (BLUEs) of GFeC on chromosomes 2A, 3B and 5A. Putative candidate genes such as NAC transcription factors and transmembrane proteins were present on chromosome 2A (763,689,738⁻765,710,113 bp). The GP for a GFeC trait ranged from low to moderate values. The current study reported GWAS of GFeC for the first time in hexaploid wheat varieties. These findings confirm the utility of GWAS and GP to explore the genetic architecture of GFeC for breeding programs aiming at the improvement of wheat grain quality.


Assuntos
Genoma de Planta , Ferro/metabolismo , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/genética , Grão Comestível/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Ferro/análise , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Espectrofotometria Atômica
20.
J Exp Bot ; 67(8): 2507-18, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26936829

RESUMO

Flowering time is a key agronomic trait that plays an important role in crop yield. There is growing interest in dissecting the developmental subphases of flowering to better understand and fine-tune plant development and maximize yield. To do this, we used the wild barley nested association mapping (NAM) population HEB-25, comprising 1420 BC1S3 lines, to map quantitative trait loci (QTLs) controlling five developmental traits, plant height, and thousand grain weight. Genome-wide association studies (GWAS) enabled us to locate a total of 89 QTLs that genetically regulate the seven investigated traits. Several exotic QTL alleles proved to be highly effective and potentially useful in barley breeding. For instance, thousand grain weight was increased by 4.5 g and flowering time was reduced by 9.3 days by substituting Barke elite QTL alleles for exotic QTL alleles at the denso/sdw1 and the Ppd-H1 loci, respectively. We showed that the exotic allele at the semi-dwarf locus denso/sdw1 can be used to increase grain weight since it uncouples the negative correlation between shoot elongation and the ripening phase. Our study demonstrates that nested association mapping of HEB-25 can help unravel the genetic regulation of plant development and yield formation in barley. Moreover, since we detected numerous useful exotic QTL alleles in HEB-25, we conclude that the introgression of these wild barley alleles into the elite barley gene pool may enable developmental phases to be specifically fine-tuned in order to maximize thousand grain weight and, potentially, yield in the long term.


Assuntos
Mapeamento Cromossômico/métodos , Genoma de Planta , Hordeum/genética , Desenvolvimento Vegetal/genética , Sementes/genética , Biomassa , Estudo de Associação Genômica Ampla , Hordeum/crescimento & desenvolvimento , Padrões de Herança/genética , Fenótipo , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA