Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Endocrinol ; 19(9): 2320-34, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15928313

RESUMO

In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4alpha and gamma. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4alpha repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4alpha and gamma functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.


Assuntos
Apolipoproteínas A/genética , Regulação da Expressão Gênica , Intestino Delgado/metabolismo , Elementos de Resposta/genética , Animais , Células CACO-2 , Elementos Facilitadores Genéticos/genética , Enterócitos/metabolismo , Humanos , Intestino Delgado/citologia , Camundongos , Camundongos Transgênicos , Mutação , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Transcrição Gênica
2.
Altern Lab Anim ; 33(6): 603-18, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16372835

RESUMO

Differentiated human intestinal Caco-2 cells are frequently used in toxicology and pharmacology as in vitro models for studies on intestinal barrier functions. Since several discrepancies exist among the different lines and clones of Caco-2 cells, comparison of the results obtained and optimisation of models for use for regulatory purposes are particularly difficult, especially with respect to culture conditions and morphological and biochemical parameters. An inter-laboratory study has been performed on the parental cell line and on three clonal Caco-2 cell lines, with the aim of standardising the culture conditions and identifying the best cell line with respect to parameters relevant to barrier integrity, namely, trans-epithelial electrical resistance (TEER) and mannitol passage, and of epithelial differentiation (alkaline phosphatase activity). Comparison of the cell lines maintained in traditional serum-supplemented culture medium or in defined medium, containing insulin, transferrin, selenium and lipids, showed that parameter performance was better and more reproducible with the traditional medium. The maintenance of the cell lines for 15 days in culture was found to be sufficient for the development of barrier properties, but not for full epithelial differentiation. Caco-2/TC7 cells performed better than the other three cell lines, both in terms of reproducibility and performance, exhibiting low TEER and mannitol passage, and high alkaline phosphatase activity.


Assuntos
Células CACO-2/fisiologia , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/química , Fosfatase Alcalina/análise , Análise de Variância , Biomarcadores/análise , Células CACO-2/efeitos dos fármacos , Células CACO-2/enzimologia , Células Cultivadas , Impedância Elétrica , Humanos , Manitol/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
3.
Am J Physiol Gastrointest Liver Physiol ; 296(2): G235-44, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19056766

RESUMO

Enterocytes of the intestinal epithelium are continually regenerated. They arise from precursor cells in crypts, migrate along villi, and finally die, 3-4 days later, when they reach the villus apex. Their death is thought to occur by anoikis, a form of apoptosis induced by cell detachment, but the mechanism of this process remains poorly understood. We have previously shown that a key event in the onset of anoikis in normal enterocytes detached from the basal lamina is the disruption of adherens junctions mediated by E-cadherin (Fouquet S, Lugo-Martinez VH, Faussat AM, Renaud F, Cardot P, Chambaz J, Pincon-Raymond M, Thenet S. J Biol Chem 279: 43061-43069, 2004). Here we have further investigated the mechanisms underlying this disassembly of the adherens junctions. We show that disruption of the junctions occurs through endocytosis of E-cadherin and that this process depends on the tyrosine-kinase activity of the epidermal growth factor receptor (EGFR). Activation of EGFR was detected in detached enterocytes before E-cadherin disappearance. Specific inhibition of EGFR by tyrphostin AG-1478 maintained E-cadherin and its cytoplasmic partners beta- and alpha-catenin at cell-cell contacts and decreased anoikis. Finally, EGFR activation was evidenced in the intestinal epithelium in vivo, in rare individual cells, which were shown to lose their interactions with the basal lamina. We conclude that EGFR is activated as enterocytes become detached from the basal lamina, and that this mechanism contributes to the disruption of E-cadherin-dependent junctions leading to anoikis. This suggests that EGFR participates in the physiological elimination of the enterocytes.


Assuntos
Anoikis , Caderinas/metabolismo , Adesão Celular , Enterócitos/metabolismo , Receptores ErbB/metabolismo , Intestino Delgado/metabolismo , Junções Íntimas/metabolismo , Animais , Anoikis/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Endocitose , Enterócitos/efeitos dos fármacos , Enterócitos/patologia , Receptores ErbB/antagonistas & inibidores , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Camundongos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Tirfostinas/farmacologia , alfa Catenina/metabolismo , beta Catenina/metabolismo
4.
Mol Cell Biol ; 29(23): 6294-308, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19805521

RESUMO

Hepatocyte nuclear factor 4alpha (HNF-4alpha) is a transcription factor which is highly expressed in the intestinal epithelium from duodenum to colon and from crypt to villus. The homeostasis of this constantly renewing epithelium relies on an integrated control of proliferation, differentiation, and apoptosis, as well as on the functional architecture of the epithelial cells. In order to determine the consequences of HNF-4alpha loss in the adult intestinal epithelium, we used a tamoxifen-inducible Cre-loxP system to inactivate the Hnf-4a gene. In the intestines of adult mice, loss of HNF-4alpha led to an increased proliferation in crypts and to an increased expression of several genes controlled by the Wnt/beta-catenin system. This control of the Wnt/beta-catenin signaling pathway by HNF-4alpha was confirmed in vitro. Cell lineage was affected, as indicated by an increased number of goblet cells and an impairment of enterocyte and enteroendocrine cell maturation. In the absence of HNF-4alpha, cell-cell junctions were destabilized and paracellular intestinal permeability increased. Our results showed that HNF-4alpha modulates Wnt/beta-catenin signaling and controls intestinal epithelium homeostasis, cell function, and cell architecture. This study indicates that HNF-4alpha regulates the intestinal balance between proliferation and differentiation, and we hypothesize that it might act as a tumor suppressor.


Assuntos
Envelhecimento/fisiologia , Fator 4 Nuclear de Hepatócito/metabolismo , Homeostase , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Animais , Linhagem da Célula , Proliferação de Células , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Absorção Intestinal , Camundongos , Microscopia Eletrônica , Transdução de Sinais , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
5.
PLoS One ; 3(8): e3000, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18714380

RESUMO

BACKGROUND: The physiological function of the ubiquitous cellular prion protein, PrP(c), is still under debate. It was essentially studied in nervous system, but poorly investigated in epithelial cells. We previously reported that PrP(c) is targeted to cell-cell junctions of polarized epithelial cells, where it interacts with c-Src. METHODOLOGY/FINDINGS: We show here that, in cultured human enterocytes and in intestine in vivo, the mature PrP(c) is differentially targeted either to the nucleus in dividing cells or to cell-cell contacts in polarized/differentiated cells. By proteomic analysis, we demonstrate that the junctional PrP(c) interacts with cytoskeleton-associated proteins, such as gamma- and beta-actin, alpha-spectrin, annexin A2, and with the desmosome-associated proteins desmoglein, plakoglobin and desmoplakin. In addition, co-immunoprecipitation experiments revealed complexes associating PrP(c), desmoglein and c-Src in raft domains. Through siRNA strategy, we show that PrP(c) is necessary to complete the process of epithelial cell proliferation and for the sub-cellular distribution of proteins involved in cell architecture and junctions. Moreover, analysis of the architecture of the intestinal epithelium of PrP(c) knock-out mice revealed a net decrease in the size of desmosomal junctions and, without change in the amount of BrdU incorporation, a shortening of the length of intestinal villi. CONCLUSIONS/SIGNIFICANCE: From these results, PrP(c) could be considered as a new partner involved in the balance between proliferation and polarization/differentiation in epithelial cells.


Assuntos
Divisão Celular/fisiologia , Células Epiteliais/citologia , Junções Intercelulares/fisiologia , Proteínas PrPC/fisiologia , Células CACO-2 , Polaridade Celular , Células Epiteliais/fisiologia , Humanos , Lipídeos/farmacologia , Plasmídeos , Proteínas PrPC/genética , RNA Interferente Pequeno/genética , Transfecção
6.
J Biol Chem ; 281(6): 3560-8, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16338932

RESUMO

Cell-matrix and cell-cell adhesion play a central role in the control of cell proliferation, differentiation, and gene expression. Integrins and E-cadherin are the key components involved in these processes in epithelial cells. We recently showed that integrin-dependent adhesion to the extracellular matrix reinforces the formation of E-cadherin-actin complexes inducing the polarization of Caco-2 enterocytes and increases the expression of a marker of enterocyte differentiation, the apolipoprotein A-IV (apoA-IV) gene. By impairing or enhancing E-cadherin-dependent cell adhesion, we demonstrate in the present study its involvement in the transcriptional activation of the apoA-IV gene in Caco-2 cells. This control requires the regulatory sequence that we have previously identified as necessary and sufficient to drive and restrict apoA-IV gene expression in enterocytes in vivo. Furthermore, using chimeric E-cadherin-Fc homophilic ligand-coated surfaces, we show that a direct activation of E-cadherin triggers the transcriptional activation of the apoA-IV promoter. Finally, E-cadherin-dependent cell-cell adhesion controls the nuclear abundance of the transcription factor hepatic nuclear factor 4alpha, which is involved in the enterocyte-specific expression of apoA-IV gene. Altogether, our results suggest that E-cadherin controls enterocyte-specific expression of genes, such as the apoA-IV gene, through the control of hepatic nuclear factor 4alpha nuclear abundance.


Assuntos
Apolipoproteínas A/biossíntese , Caderinas/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/fisiologia , Mucosa Intestinal/metabolismo , Transcrição Gênica , Apolipoproteínas A/genética , Células CACO-2 , Adesão Celular , Linhagem Celular Tumoral , Enterócitos/metabolismo , Matriz Extracelular/metabolismo , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Immunoblotting , Ligantes , Fígado/metabolismo , Luciferases/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Transfecção
7.
J Soc Biol ; 198(4): 353-6, 2004.
Artigo em Francês | MEDLINE | ID: mdl-15969340

RESUMO

Cadherin is a super family of genes, with at least 80 members. These members include classic cadherins, desmogleins, desmocollins, protocadherins, CNRs, Fats, seven-pass transmembrane cadherins and Ret tyrosine kinase. The repeated EC extracellular domains (N-terminal domain) are common to the family members and ensure cell adherence in a calcium dependant mechanism. The cadherins are expressed from amoebae to mammals. The biological complexity of cadherins is expressed at different levels, multigenic family and multiple functions in different tissues leading to use different methodological approaches. All the talks in this session broach in a promising aspect in the field of the basic comprehension of cell adhesion (R. M. Mège), at the molecular level (H. Feracci), physiological homeostasis of gut (S. Thenet), cell lineage (V. Delmas) or cancer transformation (L. Larue).


Assuntos
Caderinas/genética , Junções Intercelulares/fisiologia , Animais , Caderinas/química , Adesão Celular , Comunicação Celular , Humanos , Família Multigênica
8.
J Cell Sci ; 115(Pt 3): 543-52, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11861761

RESUMO

Enterocyte differentiation is a dynamic process during which reinforcement of cell-cell adhesion favours migration along the crypt-to-villus axis. Functional polarization of Caco-2 cells, the most commonly used model to study intestinal differentiation, is assessed by dome formation and tightness of the monolayer and is under the control of the extracellular matrix (ECM). Furthermore, our biochemical and confocal microscopy data demonstrate that the ECM dramatically reinforces E-cadherin targeting to the upper lateral membrane, formation of the apical actin cytoskeleton and its colocalization with E-cadherin in functional complexes. In our model, these effects were produced by native laminin-5-enriched ECM as well as by type IV collagen or laminin 2, which suggests a common pathway of induction through integrin receptors. Indeed, these effects were antagonized by blocking anti-beta1- and anti-alpha6-integrin antibodies and directly induced by a stimulating anti-beta1-integrin antibody. These results demonstrate that integrin-dependent cell to ECM adhesion reinforces E-cadherin-dependent cell-cell adhesion in Caco-2 cells and further support the notion that enterocyte differentiation is supported by a molecular crosstalk between the two adhesion systems of the cell.


Assuntos
Actinas/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Polaridade Celular , Integrina alfa6/metabolismo , Integrina beta1/metabolismo , Apolipoproteínas A/metabolismo , Células CACO-2 , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo
9.
J Soc Biol ; 198(4): 379-83, 2004.
Artigo em Francês | MEDLINE | ID: mdl-15969344

RESUMO

Cadherins are transmembrane glycoproteins involved in cell-cell adherence. Recent developments indicate that classical cadherins may act as adherence-activated signaling receptors. Here, we review recent data from the literature concerning the role of classical cadherins in the control of cell survival and the signaling pathways involved. We focus on the fate and the role of E-cadherin, the main classical cadherin expressed in epithelial cells, in the cell death program triggered in enterocytes by loss of anchorage from the extracellular matrix (anoikis). These data open new perspectives on the key role of this protein, which is dysregulated in most carcinoma and is considered as a tumour-suppressor.


Assuntos
Anoikis/fisiologia , Apoptose/fisiologia , Caderinas/fisiologia , Sobrevivência Celular/fisiologia , Enterócitos/citologia , Enterócitos/fisiologia , Animais , Adesão Celular , Homeostase , Humanos
10.
J Biol Chem ; 277(37): 34540-8, 2002 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-12105231

RESUMO

The apoA-I/C-III/A-IV gene cluster, like most intestine-specific genes, displays a specific pattern of expression along the intestinal cephalocaudal and crypt-to-villus axes. We have shown that this specific pattern of expression requires the distal apoA-IV promoter and the apoC-III enhancer. Using a new set of transgenic mice, we demonstrate here that the restriction of apoA-IV gene transcription to villus enterocytes requires a hormone-responsive element (HRE) located within the apoA-IV distal promoter. We showed, using nuclear extracts from villus or crypt epithelial cells, that this HRE bound the transcription factor hepatic nuclear factor 4 (HNF-4). We also found that the HNF-4gamma isoform was produced only in the villus, whereas the HNF-4alpha isoform was produced along the entire length of the crypt-to-villus axis. Our results demonstrate that the HRE of the distal apoA-IV promoter is responsible for the restriction of gene expression to villus epithelial cells and that this HRE binds HNF-4 isoforms. The in vivo observation of parallel gradients for apoA-IV and HNF-4gamma gene expression raises questions concerning whether this transcription factor plays a specific role in the control of enterocyte differentiation.


Assuntos
Apolipoproteínas A/genética , Proteínas de Ligação a DNA , Enterócitos/metabolismo , Fosfoproteínas/genética , Elementos de Resposta , Fatores de Transcrição/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células COS , Diferenciação Celular , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Regiões Promotoras Genéticas
11.
J Biol Chem ; 279(41): 43061-9, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15292248

RESUMO

Anoikis, i.e. apoptosis induced by detachment from the extracellular matrix, is thought to be involved in the shedding of enterocytes at the tip of intestinal villi. Mechanisms controlling enterocyte survival are poorly understood. We investigated the role of E-cadherin, a key protein of cell-cell adhesion, in the control of anoikis of normal intestinal epithelial cells, by detaching murine villus epithelial cells from the underlying basement membrane while preserving cell-cell interactions. We show that upon the loss of anchorage, normal enterocytes execute a program of apoptosis within minutes, via a Bcl-2-regulated and caspase-9-dependent pathway. E-cadherin is lost early from cell-cell contacts. This process precedes the execution phase of detachment-induced apoptosis as it is only weakly modulated by Bcl-2 overexpression or caspase inhibition. E-cadherin loss, however, is efficiently prevented by lysosome and proteasome inhibitors. We also found that a blocking anti-E-cadherin antibody increases the rate of anoikis, whereas the activation of E-cadherin using E-cadherin-Fc chimera proteins reduces anoikis. In conclusion, our results stress the striking sensitivity of normal enterocytes to the loss of anchorage and the contribution of E-cadherin to the control of their survival/apoptosis balance. They open new perspectives on the key role of this protein, which is dysregulated in the intestinal epithelium in both inflammatory bowel disease and cancer.


Assuntos
Anoikis , Caderinas/química , Comunicação Celular , Enterócitos/metabolismo , Animais , Apoptose , Membrana Basal/metabolismo , Western Blotting , Caderinas/metabolismo , Caspase 9 , Caspases/metabolismo , Proteínas do Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Enterócitos/patologia , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Cinética , Lisossomos/metabolismo , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Tempo , Transativadores/metabolismo , beta Catenina
12.
J Biol Chem ; 279(2): 1499-505, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14576159

RESUMO

The physiological function of PrPc, the cellular isoform of prion protein, still remains unclear, although it has been established, in vitro or by using nerve cells, that it can homodimerize, bind copper, or interact with other proteins. Expression of PrPc was demonstrated as necessary for prion infection propagation. Considering the importance of the intestinal barrier in the process of oral prion infectivity, we have analyzed the expression of PrPc in enterocytes, which represent the major cell population of the intestinal epithelium. Our study, conducted both on normal human intestinal tissues and on the enterocytic cell line Caco-2/TC7, shows for the first time that PrPc is present in enterocytes. Interestingly, we found that this glycosylphosphatidylinositol-anchored glycoprotein was localized in cholesterol-dependent raft domains of the upper lateral membranes of enterocytes, beneath tight junctions, in cell-cell junctional domains. We observed that PrPc, E-cadherin, and Src co-localized in adherens junctions and that PrPc was co-immunoprecipitated with Src kinase but not with E-cadherin. Alteration of cell polarity after cholesterol depletion or loosening of the cell-cell junctions after EGTA treatment rapidly impaired membrane targeting of PrPc. Overall, our results point out the signaling of cell-cell contacts as a putative role for PrPc in epithelial cells.


Assuntos
Enterócitos/metabolismo , Proteínas PrPC/biossíntese , Proteínas PrPC/química , Junções Aderentes/metabolismo , Células CACO-2 , Caderinas/metabolismo , Linhagem Celular , Colesterol/metabolismo , Cobre/química , Dimerização , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Microscopia Confocal , Microscopia Imunoeletrônica , Testes de Precipitina , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Quinases da Família src/metabolismo
13.
J Biol Chem ; 278(5): 3437-45, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12435748

RESUMO

In the present study, we have determined the nature and the kinetics of the cellular events triggered by the exposure of cells to non-fibrillar amyloid-beta peptide (A beta). When cortical neurons were treated with low concentrations of soluble A beta (1-40), an early reactive oxygen species (ROS)-dependent cytoskeleton disruption precedes caspase activation. Indeed, caspase activation and neuronal cell death were prevented by the microtubule-stabilizing drug taxol. A perturbation of the microtubule network was noticeable after being exposed to A beta for 1 h, as revealed by electron microscopy and immunocytochemistry. Microtubule disruption and neuronal cell death induced by A beta were inhibited in the presence of antioxidant molecules, such as probucol. These data highlight the critical role of ROS production in A beta-mediated cytoskeleton disruption and neuronal cell death. Finally, using FRAP (fluorescence recovery after photo bleaching) analysis, we observed a time-dependent biphasic modification of plasma membrane fluidity, as early as microtubule disorganization. Interestingly, molecules that inhibited neurotubule perturbation and cell death did not affect the membrane destabilizing properties of A beta, suggesting that the lipid phase of the plasma membrane might represent the earliest target for A beta. Altogether our results convey the idea that upon interaction with the plasma membrane, the non-fibrillar A beta induces a rapid ROS-dependent disorganization of the cytoskeleton, which results in apoptosis.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Apoptose/fisiologia , Córtex Cerebral/citologia , Citoesqueleto/ultraestrutura , Neurônios/citologia , Fragmentos de Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Caspases/metabolismo , Córtex Cerebral/embriologia , Citoesqueleto/efeitos dos fármacos , Embrião de Mamíferos , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA