Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 90(2 suppl 1): 2011-2023, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30133569

RESUMO

We present two pollen diagrams from the semi-arid Caatinga of the Catimbau National Park, in Pernambuco and from a Mauritia palm forest in the Caatinga/Cerrado ecotone of southern Piauí, NE Brazil, spanning the last 10,000 cal. yrs BP and the last 1,750 cal yrs BP, respectively. These two records contain a signature of the local vegetation and permit the correlation of the pollen signal with regional climatic changes. The Catimbau record shows Zizyphus sp., a typical Caatinga taxon, in all three pollen zones indicating regional Caatinga vegetation and the predominance of local arboreal taxa adapted to high humidity from 10,000 to ca. 6,000 cal. yrs BP with a gradual tendency towards drier conditions revealed by a deposition hiatus between 6,000 to ca. 2,000 cal. yrs BP. This abrupt loss of sediments in both localities is interpreted as a consequence of the establishment of modern semi-arid climates. The subsequent return of humidity is signaled by increased sedimentation rates and 14C date inversions in agreement with high precipitation, revealed by σ18O ratios in speleothems from NE Brazil. Modern sediments deposited in the last 500 years reflect local conditions with the maintenance of humidity by geological faulting and surfacing water tables.


Assuntos
Sedimentos Geológicos , Paleontologia , Pólen , Brasil , Clima Desértico , Árvores
2.
Sci Rep ; 9(1): 17912, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784587

RESUMO

The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic affinities to distant montane rainforests of isolated mountaintops in the northeast and northern Amazonia and the Guyana Shield remains unknown. We tested the hypothesis that these unexplained biogeographical patterns reflect former ecosystem rearrangements sustained by widespread plant migrations possibly due to climatic patterns that are very dissimilar from present-day conditions. To address this issue, we mapped the presence of the montane arboreal taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex, Myrsine, Symplocos, and Weinmannia, and cool-adapted plants in the families Myrtaceae, Ericaceae, and Arecaceae (palms) in 29 palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal range of 30°S to 0°S. In addition, Principal Component Analysis and Species Distribution Modelling were used to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil and Amazonia with a third short route extending from one of them. Their paleofloristic compositions suggest a climatic scenario of abundant rainfall and relative lower continental surface temperatures, possibly intensified by the effects of polar air incursions forming cold fronts into the Brazilian Highlands. Although these taxa are sensitive to changes in temperature, the combined pollen and speleothems proxy data indicate that this montane rainforest expansion during Heinrich Stadial 1 Event was triggered mainly by a less seasonal rainfall regime from the subtropics to the equatorial region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA