RESUMO
Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.
Assuntos
Adenocarcinoma/genética , Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Pólipos Adenomatosos/genética , Éxons/genética , Mutação Puntual/genética , Neoplasias Gástricas/genética , Desequilíbrio Alélico/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Mucosa Gástrica/metabolismo , Ligação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Perda de Heterozigosidade , Masculino , Linhagem , Regiões Promotoras Genéticas/genéticaRESUMO
The transcription factor caudal-type homeobox 1 (CDX1) is a key regulator of differentiation in the normal colon and in colorectal cancer (CRC). CDX1 activates the expression of enterocyte genes, but it is not clear how the concomitant silencing of stem cell genes is achieved. MicroRNAs (miRNAs) are important mediators of gene repression and have been implicated in tumor suppression and carcinogenesis, but the roles of miRNAs in differentiation, particularly in CRC, remain poorly understood. Here, we identified microRNA-215 (miR-215) as a direct transcriptional target of CDX1 by using high-throughput small RNA sequencing to profile miRNA expression in two pairs of CRC cell lines: CDX1-low HCT116 and HCT116 with stable CDX1 overexpression, and CDX1-high LS174T and LS174T with stable CDX1 knockdown. Validation of candidate miRNAs identified by RNA-seq in a larger cell-line panel revealed miR-215 to be most significantly correlated with CDX1 expression. Quantitative ChIP-PCR and promoter luciferase assays confirmed that CDX1 directly activates miR-215 transcription. miR-215 expression is depleted in FACS-enriched cancer stem cells compared with unsorted samples. Overexpression of miR-215 in poorly differentiated cell lines causes a decrease in clonogenicity, whereas miR-215 knockdown increases clonogenicity and impairs differentiation in CDX1-high cell lines. We identified the genome-wide targets of miR-215 and found that miR-215 mediates the repression of cell cycle and stemness genes downstream of CDX1. In particular, the miR-215 target gene BMI1 has been shown to promote stemness and self-renewal and to vary inversely with CDX1. Our work situates miR-215 as a link between CDX1 expression and BMI1 repression that governs differentiation in CRC.
Assuntos
Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/citologia , Diferenciação Celular , Linhagem Celular Tumoral , Colo/metabolismo , Ilhas de CpG , Perfilação da Expressão Gênica , Células HCT116 , Humanos , Complexo Repressor Polycomb 1/metabolismo , Análise de Sequência de RNA , TransfecçãoRESUMO
Malignant transformation is a multistep process that is dictated by the acquisition of multiple genomic aberrations that provide growth and survival advantage. During the post genomic era, high throughput genomic sequencing has advanced exponentially, leading to identification of countless cancer associated mutations with potential for targeted therapy. Mouse models of cancer serve as excellent tools to examine the functionality of gene mutations and their contribution to the malignant process. However, it remains unclear whether the genetic events that occur during transformation are similar in mice and humans. To address that, we chose several transgenic mouse models of hematopoietic malignancies and identified acquired mutations in these mice by means of targeted re-sequencing of known cancer-associated genes as well as whole exome sequencing. We found that mutations that are typically found in acute myeloid leukemia or T cell acute lymphoblastic leukemia patients are also common in mouse models of the respective disease. Moreover, we found that the most frequent mutations found in a mouse model of lymphoma occur in a set of epigenetic modifier genes, implicating this pathway in the generation of lymphoma. These results demonstrate that genetically engineered mouse models (GEMM) mimic the genetic evolution of human cancer and serve as excellent platforms for target discovery and validation.
Assuntos
Modelos Animais de Doenças , Leucemia/genética , Linfoma/genética , Mutação , Animais , Humanos , CamundongosRESUMO
Deregulated E2F transcription factor activity occurs in the vast majority of human tumors and has been solidly implicated in disturbances of cell cycle control, proliferation, and apoptosis. Aberrant E2F regulatory activity is often caused by impairment of control through pRB function, but little is known about the interplay of other oncoproteins with E2F. Here we show that ETS transcription factor fusions resulting from disease driving rearrangements in Ewing sarcoma (ES) and prostate cancer (PC) are one such class of oncoproteins. We performed an integrative study of genome-wide DNA-binding and transcription data in EWSR1/FLI1 expressing ES and TMPRSS2/ERG containing PC cells. Supported by promoter activity and mutation analyses, we demonstrate that a large fraction of E2F3 target genes are synergistically coregulated by these aberrant ETS proteins. We propose that the oncogenic effect of ETS fusion oncoproteins is in part mediated by the disruptive effect of the E2F-ETS interaction on cell cycle control. Additionally, a detailed analysis of the regulatory targets of the characteristic EWSR1/FLI1 fusion in ES identifies two functionally distinct gene sets. While synergistic regulation in concert with E2F in the promoter of target genes has a generally activating effect, EWSR1/FLI1 binding independent of E2F3 is predominantly associated with repressed differentiation genes. Thus, EWSR1/FLI1 appears to promote oncogenesis by simultaneously promoting cell proliferation and perturbing differentiation.
Assuntos
Fator de Transcrição E2F3/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias da Próstata/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Apoptose/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F3/metabolismo , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/patologia , Ligação Proteica , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/patologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transativadores/genética , Transativadores/metabolismo , Regulador Transcricional ERGRESUMO
LIN28A and LIN28B, the mammalian homologs of lin-28, are implicated in malignant transformation in part because of their ability to promote degradation of the let-7 family of miRs. In the present study, we show that overexpression of Lin28b in vivo leads to an aggressive peripheral T-cell lymphoma (PTCL) characterized by widespread infiltration of parenchymal organs with malignant CD4(+) cells. Similar to patients with PTCL, Lin28b-transgenic mice show signs of inflammation such as eosinophilia, increased C-reactive protein, release of inflammatory cytokines, and pleural effusion. The PTCLs that develop in Lin28b mice are derived from activated T cells and show decreased let-7 expression, increased Il6 expression, activation of NF-κB, and infiltration of B cells, all resulting in an inflammatory microenvironment. In addition, LIN28B is overexpressed 7.5-fold in PTCL patient samples compared with activated CD4(+) cells. The results of the present study demonstrate for the first time that Lin28b can transform primary cells in vivo, identify a previously unsuspected link between Lin28b and PTCL, and provide a unique animal model for the study of PTCL biology and therapy.
Assuntos
Diferenciação Celular/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Mediadores da Inflamação/metabolismo , Linfoma de Células T Periférico/genética , Linfócitos T/fisiologia , Animais , Diferenciação Celular/imunologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteínas de Ligação a DNA/fisiologia , Feminino , Linfoma de Células T Periférico/imunologia , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Ligação a RNA , Linfócitos T/metabolismo , Transfecção , Transgenes/genéticaRESUMO
BACKGROUND: Targeted capture, combined with massively-parallel sequencing, is a powerful technique that allows investigation of specific portions of the genome for less cost than whole genome sequencing. Several methods have been developed, and improvements have resulted in commercial products targeting the human or mouse exonic regions (the exome). In some cases it is desirable to custom-target other regions of the genome, either to reduce the amount of sequence that is targeted or to capture regions that are not targeted by commercial kits. It is important to understand the advantages, limitations, and complexity of a given capture method before embarking on a targeted sequencing experiment. RESULTS: We compared two custom targeted capture methods suitable for single chromosome analysis: Solution Hybrid Selection (SHS) and Flow Sorting (FS) of single chromosomes. Both methods can capture targeted material and result in high percentages of genotype identifications across these regions: 59-92% for SHS and 70-79% for FS. FS is amenable to current structural variation detection methods, and variants were detected. Structural variation was also assessed for SHS samples with paired end sequencing, resulting in variant identification. CONCLUSIONS: While both methods can effectively target genomic regions for genotype determination, several considerations make each method appropriate in different circumstances. SHS is well suited for experiments targeting smaller regions in a larger number of samples. FS is well suited when regions of interest cover large regions of a single chromosome. Although whole genome sequencing is becoming less expensive, the sequencing, data storage, and analysis costs make targeted sequencing using SHS or FS a compelling option.
Assuntos
Cromossomos/genética , Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , Genótipo , Humanos , Mutação INDEL , CamundongosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Following publication of the original paper [1], the authors submitted a new Additional file 5 to replace the one containing formatting issues. The updated Additional file 5 is published in this correction.
RESUMO
Risk factors for thyroid cancer remain largely unknown except for ionizing radiation exposure during childhood and a history of benign thyroid nodules. Because thyroid nodules are more common than thyroid cancers and are associated with thyroid cancer risk, we evaluated several polymorphisms potentially relevant to thyroid tumors and assessed interaction with ionizing radiation exposure to the thyroid gland. Thyroid nodules were detected in 1998 by ultrasound screening of 2997 persons who lived near the Semipalatinsk nuclear test site in Kazakhstan when they were children (1949-1962). Cases with thyroid nodules (n = 907) were frequency matched (1:1) to those without nodules by ethnicity (Kazakh or Russian), gender and age at screening. Thyroid gland radiation doses were estimated from fallout deposition patterns, residence history and diet. We analyzed 23 polymorphisms in 13 genes and assessed interaction with ionizing radiation exposure using likelihood ratio tests (LRT). Elevated thyroid nodule risks were associated with the minor alleles of RET S836S (rs1800862, P = 0.03) and GFRA1 -193C>G (rs not assigned, P = 0.05) and decreased risk with XRCC1 R194W (rs1799782, P trend = 0.03) and TGFB1 T263I (rs1800472, P = 0.009). Similar patterns of association were observed for a small number of papillary thyroid cancers (n = 25). Ionizing radiation exposure to the thyroid gland was associated with significantly increased risk of thyroid nodules (age and gender adjusted excess odds ratio/Gy = 0.30, 95% CI 0.05-0.56), with evidence for interaction by genotype found for XRCC1 R194W (LRT P value = 0.02). Polymorphisms in RET signaling, DNA repair and proliferation genes may be related to risk of thyroid nodules, consistent with some previous reports on thyroid cancer. Borderline support for gene-radiation interaction was found for a variant in XRCC1, a key base excision repair protein. Other pathways such as genes in double-strand break repair, apoptosis and genes related to proliferation should also be pursued.
Assuntos
Reparo do DNA/efeitos da radiação , Exposição Ambiental/efeitos adversos , Neoplasias Induzidas por Radiação/genética , Armas Nucleares , Polimorfismo Genético/genética , Proteínas Proto-Oncogênicas c-ret/genética , Nódulo da Glândula Tireoide/genética , Adulto , Idoso , DNA/genética , Feminino , Predisposição Genética para Doença , Humanos , Cazaquistão , Masculino , Pessoa de Meia-Idade , Doses de Radiação , Tireotropina/genéticaRESUMO
Many tumors maintain chromosome-ends through a telomerase-independent, DNA-templated mechanism called alternative lengthening of telomeres (ALT). While ALT occurs in only a subset of tumors, it is strongly associated with mutations in the genes ATRX and DAXX, which encode components of an H3.3 histone chaperone complex. The role of ATRX and DAXX mutations in potentiating the mechanism of ALT remains incompletely understood. Here we characterize an osteosarcoma cell line, G292, with wild-type ATRX but a unique chromosome translocation resulting in loss of DAXX function. While ATRX and DAXX form a complex in G292, this complex fails to localize to nuclear PML bodies. We demonstrate that introduction of wild type DAXX suppresses the ALT phenotype and restores the localization of ATRX/DAXX to PML bodies. Using an inducible system, we show that ALT-associated PML bodies are disrupted rapidly following DAXX induction and that ALT is again restored following withdrawal of DAXX.
Assuntos
Neoplasias Ósseas/genética , Proteínas Correpressoras/genética , Chaperonas Moleculares/genética , Mutação , Osteossarcoma/genética , Homeostase do Telômero , Neoplasias Ósseas/patologia , Humanos , Osteossarcoma/patologia , Fenótipo , Telomerase/genética , Telomerase/metabolismo , Células Tumorais CultivadasRESUMO
Reducing or eliminating persistent disparities in lung cancer incidence and survival has been challenging because our current understanding of lung cancer biology is derived primarily from populations of European descent. Here we show results from a targeted sequencing panel using NCI-MD Case Control Study patient samples and reveal a significantly higher prevalence of PTPRT and JAK2 mutations in lung adenocarcinomas among African Americans compared with European Americans. This increase in mutation frequency was validated with independent WES data from the NCI-MD Case Control Study and TCGA. We find that patients carrying these mutations have a concomitant increase in IL-6/STAT3 signaling and miR-21 expression. Together, these findings suggest the identification of these potentially actionable mutations could have clinical significance for targeted therapy and the enrollment of minority populations in clinical trials.
Assuntos
Adenocarcinoma de Pulmão/genética , Negro ou Afro-Americano/genética , Janus Quinase 2/genética , Neoplasias Pulmonares/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Idoso , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Disparidades nos Níveis de Saúde , Humanos , Interleucina-6/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Mutação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , População Branca/genéticaRESUMO
High-dose ionizing radiation exposure to the breast and rare autosomal dominant genes have been linked with increased breast cancer risk, but the role of low-to-moderate doses from protracted radiation exposure in breast cancer risk and its potential modification by polymorphisms in DNA repair genes has not been previously investigated among large numbers of radiation-exposed women with detailed exposure data. Using carefully reconstructed estimates of cumulative breast doses from occupational and personal diagnostic ionizing radiation, we investigated the potential modification of radiation-related breast cancer risk by 55 candidate single nucleotide polymorphisms in 17 genes involved in base excision or DNA double-strand break repair among 859 cases and 1083 controls from the United States Radiologic Technologists (USRT) cohort. In multivariable analyses, WRN V114I (rs2230009) significantly modified the association between cumulative occupational breast dose and risk of breast cancer (adjusted for personal diagnostic exposure) (p = 0.04) and BRCA1 D652N (rs4986850), PRKDC IVS15 + 6C > T (rs1231202), PRKDC IVS34 + 39T > C (rs8178097) and PRKDC IVS31 - 634C > A (rs10109984) significantly altered the personal diagnostic radiation exposure-response relationship (adjusted for occupational dose) (p < or = 0.05). None of the remaining 50 SNPs significantly modified breast cancer radiation dose-response relationships. The USRT genetic study provided a unique opportunity to examine the joint effects of common genetic variation and ionizing radiation exposure on breast cancer risk using detailed occupational and personal diagnostic exposure data. The suggestive evidence found for modification of radiation-related breast cancer risk for 5 of the 55 SNPs evaluated requires confirmation in larger studies of women with quantified radiation breast doses in the low-to-moderate range.
Assuntos
Neoplasias da Mama/epidemiologia , Enzimas Reparadoras do DNA/genética , Reparo do DNA/genética , Neoplasias Induzidas por Radiação/epidemiologia , Exposição Ocupacional , Polimorfismo de Nucleotídeo Único/genética , Tecnologia Radiológica , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/etiologia , Relação Dose-Resposta à Radiação , Feminino , Genótipo , Humanos , Incidência , Pessoa de Meia-Idade , Neoplasias Induzidas por Radiação/etiologia , Radiação Ionizante , Estudos Retrospectivos , Fatores de Risco , Estados Unidos/epidemiologia , Recursos HumanosRESUMO
BK polyomavirus (BKV) frequently causes nephropathy (BKVN) in kidney transplant recipients (KTRs). BKV has also been implicated in the etiology of bladder and kidney cancers. We characterized BKV variants from two KTRs who developed BKVN followed by renal carcinoma. Both patients showed a swarm of BKV sequence variants encoding non-silent mutations in surface loops of the viral major capsid protein. The temporal appearance and disappearance of these mutations highlights the intra-patient evolution of BKV. Some of the observed mutations conferred resistance to antibody-mediated neutralization. The mutations also modified the spectrum of receptor glycans engaged by BKV during host cell entry. Intriguingly, all observed mutations were consistent with DNA damage caused by antiviral APOBEC3 cytosine deaminases. Moreover, APOBEC3 expression was evident upon immunohistochemical analysis of renal biopsies from KTRs. These results provide a snapshot of in-host BKV evolution and suggest that APOBEC3 may drive BKV mutagenesis in vivo.
Assuntos
Vírus BK/genética , Citosina Desaminase/fisiologia , Transplante de Rim , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologia , Desaminases APOBEC , Adulto , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus BK/imunologia , Proteínas do Capsídeo/genética , Linhagem Celular , Mapeamento Cromossômico , Citidina Desaminase , Dano ao DNA , DNA Viral/análise , DNA Viral/genética , Feminino , Células HEK293 , Humanos , Itália , Nefropatias/patologia , Nefropatias/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Infecções por Polyomavirus/sangue , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/patologia , Infecções Tumorais por Vírus/sangue , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologiaRESUMO
BACKGROUND: Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesize that somatic mutations together with cigarette smoke generate a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from 33 controls and 143 cancer cases, we conduct 16S ribosomal RNA (rRNA) bacterial gene sequencing, with RNA-sequencing data from lung cancer cases in The Cancer Genome Atlas serving as the validation cohort. RESULTS: Overall, we demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue. In squamous cell carcinoma specifically, a separate group of taxa are identified, in which Acidovorax is enriched in smokers. Acidovorax temporans is identified within tumor sections by fluorescent in situ hybridization and confirmed by two separate 16S rRNA strategies. Further, these taxa, including Acidovorax, exhibit higher abundance among the subset of squamous cell carcinoma cases with TP53 mutations, an association not seen in adenocarcinomas. CONCLUSIONS: The results of this comprehensive study show both microbiome-gene and microbiome-exposure interactions in squamous cell carcinoma lung cancer tissue. Specifically, tumors harboring TP53 mutations, which can impair epithelial function, have a unique bacterial consortium that is higher in relative abundance in smoking-associated tumors of this type. Given the significant need for clinical diagnostic tools in lung cancer, this study may provide novel biomarkers for early detection.
Assuntos
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/microbiologia , Microbiota/genética , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Biodiversidade , Comamonadaceae/classificação , Comamonadaceae/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neoplasias de Células Escamosas/genética , Neoplasias de Células Escamosas/microbiologia , Proteobactérias/metabolismo , Reprodutibilidade dos Testes , Fumantes , Proteína Supressora de Tumor p53/metabolismoRESUMO
Several variants in the TSHR and RET signaling pathways genes have been reported to be related to cancer risk. We hypothesized that polymorphic variants in these genes are associated with the risk of papillary thyroid cancer. A nested case-control study was conducted within the U.S. Radiologic Technologists cohort. Eligible validated papillary thyroid cancer cases (n = 167) and frequency-matched (by sex and birth year) controls (n = 491) donated blood for analysis. There were no statistically significant associations between papillary thyroid cancer and 10 selected polymorphic variants in analyses of men and women combined. A borderline significant increasing risk was found for RET G691S (P(trend) = 0.05) and was especially pronounced among young women. For women under 38 years (the median age at diagnosis), the odds ratios were 2.1 (95% confidence interval, 1.2-3.7) for those heterozygous for the RET G691S polymorphism and 3.7 (95% confidence interval, 1.1-11.8) for those who were homozygous (P(trend) = 0.001). Our data provide limited evidence that TSHR- and RET-related genes are related to papillary thyroid cancer risk.
Assuntos
Carcinoma Papilar/genética , Polimorfismo Genético , Proteínas Proto-Oncogênicas c-ret/genética , Receptores da Tireotropina/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Carcinoma Papilar/sangue , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-ret/sangue , Receptores da Tireotropina/sangue , Neoplasias da Glândula Tireoide/sangueRESUMO
BACKGROUND: We studied linkage disequilibrium (LD) patterns at the BRCA1 locus, a susceptibility gene for breast and ovarian cancer, using a dense set of 114 single nucleotide polymorphisms in 5 population groups. We focused on Ashkenazi Jews in whom there are known founder mutations, to address the question of whether we would have been able to identify the 185delAG mutation in a case-control association study (should one have been done) using anonymous genetic markers. This mutation is present in approximately 1% of the general Ashkenazi population and 4% of Ashkenazi breast cancer cases. We evaluated LD using pairwise and haplotype-based methods, and assessed correlation of SNPs with the founder mutations using Pearson's correlation coefficient. RESULTS: BRCA1 is characterized by very high linkage disequilibrium in all populations spanning several hundred kilobases. Overall, haplotype blocks and pair-wise LD bins were highly correlated, with lower LD in African versus non-African populations. The 185delAG and 5382insC founder mutations occur on the two most common haplotypes among Ashkenazim. Because these mutations are rare, even though they are in strong LD with many other SNPs in the region as measured by D-prime, there were no strong associations when assessed by Pearson's correlation coefficient, r (maximum of 0.04 for the 185delAG). CONCLUSION: Since the required sample size is related to the inverse of r, this suggests that it would have been difficult to map BRCA1 in an Ashkenazi case-unrelated control association study using anonymous markers that were linked to the founder mutations.
Assuntos
Efeito Fundador , Genes BRCA1 , Predisposição Genética para Doença , Judeus/genética , Neoplasias da Mama/etnologia , Neoplasias da Mama/genética , Estudos de Casos e Controles , Feminino , Genoma Humano , Haplótipos , Humanos , Desequilíbrio de Ligação , Neoplasias Ovarianas/etnologia , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Deleção de SequênciaRESUMO
B-1 and B-2 lymphocytes are derived from distinct developmental pathways and represent layered arms of the innate and adaptive immune systems, respectively. In contrast to a majority of murine B-cell malignancies, which stain positive with the B220 antibody, we discovered a novel form of B-cell leukemia in NUP98-PHF23 (NP23) transgenic mice. The immunophenotype (Lin- B220- CD19+ AA4.1+) was identical to that of progenitor (pro) B-1 cells, and VH gene usage was skewed toward 3' V regions, similar to murine fetal liver B cells. Moreover, the gene expression profile of these leukemias was most similar to that of fetal liver pro-B fraction BC, a known source of B-1 B cells, further supporting a pro-B-1 origin of these leukemias. The NP23 pro-B-1 acute lymphoblastic leukemias (ALLs) acquired spontaneous mutations in both Bcor and Janus kinase (Jak) pathway (Jak1/2/3 and Stat5a) genes, supporting a hypothesis that mutations in 3 critical pathways (stem-cell self-renewal, B-cell differentiation, and cytokine signaling) collaborate to induce B-cell precursor (BCP) ALL. Finally, the thymic stromal lymphopoietin (Tslp) cytokine is required for murine B-1 development, and chromosomal rearrangements resulting in overexpression of the TSLP receptor (CRLF2) are present in some patients with high-risk BCP-ALL (referred to as CRLF2r ALL). Gene expression profiles of NP23 pro-B-1 ALL were more similar to that of CRLF2r ALL than non-CRLF2r ALL, and analysis of VH gene usage from patients with CRLF2r ALL demonstrated preferential usage of VH regions used by human B-1 B cells, leading to the suggestion that this subset of patients with BCP-ALL has a malignancy of B-1, rather than B-2, B-cell origin.
RESUMO
Homozygous mutation in the ATM gene causes ataxia telangiectasia and heterozygous mutation carriers may be at increased risk of breast cancer. We studied a total of 22 ATM variants; 18 variants were analyzed in one of two large population-based studies from the U.S. and Poland, and four variants were analyzed in all 2,856 breast cancer cases and 3,344 controls from the two studies. The missense mutation Ser49Cys (c.146C>G, p.S49C), carried by approximately 2% of subjects, was more common in cases than controls in both study populations, combined odds ratio (OR) 1.69 (95% CI, 1.19-2.40; P=0.004). Another missense mutation at approximately 2% frequency, Phe858Leu (c.2572T>C, p.F858L), was associated with a significant increased risk in the U.S. study but not in Poland, and had a combined OR of 1.44 (95% CI, 0.98-2.11; P=0.06). These analyses provide the most convincing evidence thus far that missense mutations in ATM, particularly p.S49C, may be breast cancer susceptibility alleles. Because of their low frequency, even larger sample sizes are required to more firmly establish these associations.
Assuntos
Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Alelos , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias da Mama/epidemiologia , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Polônia/epidemiologia , Fatores de Risco , Estados Unidos/epidemiologiaRESUMO
The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A) in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor's natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression.
Assuntos
Axônios/metabolismo , Genoma Humano , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptores de Superfície Celular/genética , Idoso , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos Humanos/genética , Análise Mutacional de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Ligantes , Masculino , Invasividade Neoplásica , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Cariotipagem Espectral , Transfecção , Proteína cdc42 de Ligação ao GTP/metabolismoRESUMO
Two potential breast cancer susceptibility genes, encoding the BRCA1-interacting proteins ZNF350 (or ZBRK1) and BRIP1 (or BACH1), have been identified in yeast two-hybrid screens. We sequenced these genes in probands from 21 families with potentially inherited breast/ovarian cancer, all of which were negative for BRCA1/BRCA2 mutations. Families had at least one case of male breast cancer, two cases of ovarian cancer, or three or more cases of breast and ovarian cancer. In addition, 58 early-onset (before age 35) breast cancer cases and 30 reference individuals were analyzed. Of 17 variants detected in ZBRK1, a missense mutation Val524Ile was identified in the proband of one high-risk family, but no other family members were available for testing. Of 25 variants identified in BRIP1, in addition to four common silent or missense mutations, we identified Gln540Leu, a non-conservative amino acid change, in a single familial proband with inflammatory breast cancer, but this mutation was not present in her three relatives with breast cancer. Haplotype analysis suggests that all ZBRK1 SNPs fall within a single block with two SNPs capturing 92% of the haplotype diversity, while the BRIP1 SNPs fall in two blocks, with five SNPs capturing 89% of the haplotype diversity. Based on sequencing of ZBRK1 and BRIP1 in 21 BRCA1/2-negative probands from inherited breast/ovarian cancer families, it appears unlikely that mutations in these genes account for a significant fraction of inherited breast cancer. Further analysis in unselected cases will be required to know whether the identified variants play a role in genetic predisposition to breast cancer in the general population. Hum Mutat 22:121-128, 2003. Published 2003 Wiley-Liss, Inc.