Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Chem Biodivers ; 21(3): e202301315, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189169

RESUMO

Thousands of years ago, humans started to use propolis because of its medicinal properties, and modern science has successfully identified several bioactive molecules within this resinous bee product. However, a natural propolis extract which has been removed the adhesive glue and preserved propolis bioactive compounds is urgently needed to maximise the therapeutic opportunities. In this study, a novel ultrafiltrate fraction from Brazilian green propolis, termed P30K, was demonstrated with anti-inflammatory properties, both in vitro and in vivo. Total flavonoids and total phenolic acids content in P30K were 244.6 mg/g and 275.8 mg/g respectively, while the IC50 value of inhibition of cyclooxygenase-2 (COX-2) was 8.30 µg/mL. The anti-inflammatory activity of P30K was furtherly corroborated in experimental models of lipopolysaccharides (LPS)-induced acute liver and lung injury. Mechanistically, integrated GC-MS and LC-MS based serum metabolomics analysis revealed that P30K modulated citrate cycle (TCA), pyruvate, glyoxylate and dicarboxylate metabolism pathways to inhibit secretion of pro-inflammatory cytokines. Results of network pharmacology and molecular docking suggested that P30K targeted catechol-O-methyltransferases (COMT), 11ß-hydroxysteroid dehydrogenases (HSD11B1), and monoamine oxidases (MAOA and MAOB) to promote cellular metabolomic rewiring. Collectively, our work reveals P30K as an efficient therapeutic agent against inflammatory conditions and its efficacy is related to metabolic rewiring.


Assuntos
Própole , Humanos , Própole/farmacologia , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Brasil
2.
Chem Biodivers ; 21(2): e202301333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38116898

RESUMO

Propolis is one functional supplement with hundreds of years of usage. However, it's rarely consumed directly for its resinous property. Herein, a pre-treated process which can remove the impurity while preserve its bioactivities is needed to maximise its therapeutic opportunities. In the present study, a membrane-based ultrafiltration process was developed on a KM1812-NF experimental instrument. Using Brazilian green propolis as testing material, all experimental steps and parameters were sequentially optimized. In addition, a mathematical model was developed to fit the process. As a result, the optimum solvent was 60 % ethanol adjusted to pH 8-9, while the optimum MWCO (molecular weight cut-off) value of membrane was 30 KDa. The membrane filtration dynamic model fitted with the function y=(ax+b)/(1+cx+dx2 ). The resulting propolis ultrafiltrate from Brazilian green propolis, termed P30K, contains the similar profile of flavonoids and phenolic acids as raw propolis. Meanwhile, the ORAC (oxygen radical absorbance capacity) value of P30K is 11429.45±1557.58 µM TE/g and the IC50 value of inhibition of fluorescent AGEs (advanced glycation end products) formation is 0.064 mg/mL. Our work provides an innovative alternative process for extraction of active compounds from propolis and reveals P30K as an efficient therapeutic antioxidant.


Assuntos
Antioxidantes , Própole , Antioxidantes/farmacologia , Antioxidantes/química , Própole/farmacologia , Própole/química , Flavonoides/química , Etanol/química , Solventes
3.
PLoS Pathog ; 17(11): e1010069, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748611

RESUMO

ES-62 is the major secreted protein of the parasitic filarial nematode, Acanthocheilonema viteae. The molecule exists as a large tetramer (MW, ~240kD), which possesses immunomodulatory properties by virtue of multiple phosphorylcholine (PC) moieties attached to N-type glycans. By suppressing inflammatory immune responses, ES-62 can prevent disease development in certain mouse models of allergic and autoimmune conditions, including joint pathology in collagen-induced arthritis (CIA), a model of rheumatoid arthritis (RA). Such protection is associated with functional suppression of "pathogenic" hyper-responsive synovial fibroblasts (SFs), which exhibit an aggressive inflammatory and bone-damaging phenotype induced by their epigenetic rewiring in response to the inflammatory microenvironment of the arthritic joint. Critically, exposure to ES-62 in vivo induces a stably-imprinted CIA-SF phenotype that exhibits functional responses more typical of healthy, Naïve-SFs. Consistent with this, ES-62 "rewiring" of SFs away from the hyper-responsive phenotype is associated with suppression of ERK activation, STAT3 activation and miR-155 upregulation, signals widely associated with SF pathogenesis. Surprisingly however, DNA methylome analysis of Naïve-, CIA- and ES-62-CIA-SF cohorts reveals that rather than simply preventing pathogenic rewiring of SFs, ES-62 induces further changes in DNA methylation under the inflammatory conditions pertaining in the inflamed joint, including targeting genes associated with ciliogenesis, to programme a novel "resolving" CIA-SF phenotype. In addition to introducing a previously unsuspected aspect of ES-62's mechanism of action, such unique behaviour signposts the potential for developing DNA methylation signatures predictive of pathogenesis and its resolution and hence, candidate mechanisms by which novel therapeutic interventions could prevent SFs from perpetuating joint inflammation and destruction in RA. Pertinent to these translational aspects of ES-62-behavior, small molecule analogues (SMAs) based on ES-62's active PC-moieties mimic the rewiring of SFs as well as the protection against joint disease in CIA afforded by the parasitic worm product.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/prevenção & controle , Epigênese Genética , Fibroblastos/metabolismo , Proteínas de Helminto/farmacologia , Inflamação/prevenção & controle , Sinoviócitos/metabolismo , Acanthocheilonema/metabolismo , Animais , Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Células Cultivadas , Metilação de DNA , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia
4.
Cell Immunol ; 387: 104717, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37075620

RESUMO

CD20+ T cells comprise a highly inflammatory subset implicated in autoimmunity, including rheumatoid arthritis (RA). We sought to characterize the CD20+ T cell subset in the murine collagen-induced arthritis (CIA) model of RA and investigate the phenotype and functional relevance of CD3+CD20+ T cells in the lymph nodes and arthritic joints using flow cytometry and immunohistochemistry. We demonstrate that CD3+CD4+CD20+ and CD3+CD8+CD20+ T cells are expanded in the draining lymph nodes of CIA mice, produce increased levels of pro-inflammatory cytokines and are less susceptible to regulation by regulatory T cells. Notably, CD3+CD4+CD20+ and CD3+CD8+CD20+ T cells are enriched with CXCR5+PD-1+ T follicular helper cells and CXCR5-PD-1+ peripheral T helper cells, subsets of T cells implicated in promoting B-cell responses and antibody production within pathologically inflamed non-lymphoid tissues in RA. Our findings suggest CD20+ T cells are associated with inflammatory responses and may exacerbate pathology by promoting inflammatory B-cell responses.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Linfócitos T Auxiliares-Indutores , Subpopulações de Linfócitos T , Receptores CXCR5
5.
PLoS Pathog ; 16(3): e1008391, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163524

RESUMO

Improvements in hygiene and health management have driven significant increases in human lifespan over the last 50 years. Frustratingly however, this extension of lifespan has not been matched by equivalent improvements in late-life health, not least due to the global pandemic in type-2 diabetes, obesity and cardiovascular disease, all ageing-associated conditions exacerbated and accelerated by widespread adoption of the high calorie Western diet (HCD). Recently, evidence has begun to emerge that parasitic worm infection might protect against such ageing-associated co-morbidities, as a serendipitous side-effect of their evolution of pro-survival, anti-inflammatory mechanisms. As a novel therapeutic strategy, we have therefore investigated the potential of ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, to improve healthspan (the period of life before diseases of ageing appear) by targeting the chronic inflammation that drives metabolic dysregulation underpinning ageing-induced ill-health. We administered ES-62 subcutaneously (at a dose of 1 µg/week) to C57BL/6J mice undergoing HCD-accelerated ageing throughout their lifespan, while subjecting the animals to analysis of 120 immunometabolic responses at various time-points. ES-62 improved a number of inflammatory parameters, but markedly, a range of pathophysiological, metabolic and microbiome parameters of ageing were also successfully targeted. Notably, ES-62-mediated promotion of healthspan in male and female HCD-mice was associated with different mechanisms and reflecting this, machine learning modelling identified sex-specific signatures predictive of ES-62 action against HCD-accelerated ageing. Remarkably, ES-62 substantially increased the median survival of male HCD-mice. This was not the case with female animals and unexpectedly, this difference between the two sexes could not be explained in terms of suppression of the chronic inflammation driving ageing, as ES-62 tended to be more effective in reducing this in female mice. Rather, the difference appeared to be associated with ES-62's additional ability to preferentially promote a healthier gut-metabolic tissue axis in male animals.


Assuntos
Acanthocheilonema/imunologia , Acantoqueilonemíase/imunologia , Dieta Ocidental/efeitos adversos , Proteínas de Helminto/imunologia , Longevidade/imunologia , Modelos Imunológicos , Animais , Feminino , Masculino , Camundongos
6.
Immunology ; 164(1): 3-14, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33763853

RESUMO

Urinary tract infections (UTI) are among the most prevalent infectious diseases and the most common cause of nosocomial infections, worldwide. Uropathogenic E. coli (UPEC) are responsible for approximately 80% of all UTI, which most commonly affect the bladder. UPEC colonize the urinary tract by ascension of the urethra, followed by cell invasion, and proliferation inside and outside urothelial cells, thereby causing symptomatic infections and quiescent intracellular reservoirs that may lead to recurrence. Sugars, or glycans, are key molecules for host-pathogen interactions, and UTI are no exception. Surface glycans regulate many of the events associated with UPEC adhesion and infection, as well as induction of the host immune response. While the bacterial protein FimH binds mannose-containing host glycoproteins to initiate infection and UPEC-secreted polysaccharides block immune mechanisms to favour intracellular replication, host glycans on the urothelial surface and on secreted glycoproteins prevent or limit infection by inhibiting UPEC adhesion. Given the importance of glycans during UTI, here we review the glycobiology of UPEC infection to highlight fundamental sugar-mediated processes of immunological interest for their potential clinical applications. Interdisciplinary approaches incorporating glycomics and infection biology may help to develop novel non-antibiotic-based therapeutic strategies for bacterial infections as the spread of antimicrobial-resistant uropathogens is currently threatening modern healthcare systems.


Assuntos
Polissacarídeos/metabolismo , Sistema Urinário/imunologia , Escherichia coli Uropatogênica/fisiologia , Animais , Infecções por Escherichia coli , Glicômica , Interações Hospedeiro-Patógeno , Humanos , Polissacarídeos/imunologia , Infecções Urinárias , Virulência
7.
Parasite Immunol ; 43(3): e12803, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33091157

RESUMO

AIMS: ES-62 is a well-studied anti-inflammatory molecule secreted by L4-adult stage Acanthocheilonema viteae. We maintain the life cycle of A viteae using Meriones libycus as the definitive host. Here, we investigated whether the full life cycle could be maintained, and functional ES-62 produced, in a related jird species-Meriones shawi. METHODS AND RESULTS: Adult worms were produced in comparable numbers in the two species, but very few microfilariae (MF) were observed in the M shawi bloodstream. M shawi ES-62 produced ex vivo was functional and protective in a mouse model of arthritis. Myeloid-derived cells from naïve and infected jirds of both species were compared with respect to ROS production and osteoclast generation, and some differences between the two species in both the absence and presence of infection were observed. CONCLUSIONS: The life cycle of A viteae cannot be successfully completed in M shawi jirds but L3 stage worms develop to adulthood and produce functional ES-62. Preliminary investigation into jird immune responses suggests that infection can differentially modulate myeloid responses in the two species. However, species-specific reagents are required to understand the complex interplay between A viteae and its host and to explain the lack of circulating MF in infected M shawi jirds.


Assuntos
Acanthocheilonema/crescimento & desenvolvimento , Acantoqueilonemíase/parasitologia , Gerbillinae/parasitologia , Proteínas de Helminto/biossíntese , Animais , Modelos Animais de Doenças , Feminino , Estágios do Ciclo de Vida , Masculino , Camundongos , Microfilárias/crescimento & desenvolvimento , Especificidade da Espécie
8.
J Infect Dis ; 212(7): 1160-71, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25805753

RESUMO

BACKGROUND: Chagas disease is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. One of the major causes of mortality in the disease is the cardiomyopathy observed in chronic patients, despite the low number of parasites detected in cardiac tissue. Galectin-3, a carbohydrate-binding protein with affinity for ß-galactoside-containing glycoconjugates, is upregulated upon infection, and it has been recently involved in the pathophysiology of heart failure. METHODS: We investigated the role of galectin-3 in systemic and local responses in a murine model of T. cruzi infection, using knockout animals. Molecular mechanisms underlying galectin-3-dependent inflammatory responses were further assessed in cultured dendritic cells in vitro. RESULTS: Mice deficient for galectin-3 have elevated blood parasitemia levels and impaired cytokine production during infection. Remarkably, galectin-3 promotes cellular infiltration in the heart of infected mice and subsequent collagen deposition and cardiac fibrosis. Furthermore, we show that an unbalanced Toll-like receptor expression on antigen-presenting cells may be the cause of the impaired immune response observed in galectin-3-deficient mice in vivo. CONCLUSIONS: These results suggest that galectin-3 is strongly involved in Chagas disease, not only in the immune response against T. cruzi, but also in mediating cardiac tissue damage.


Assuntos
Doença de Chagas/imunologia , Galectina 3/imunologia , Imunidade Inata/imunologia , Miocárdio/patologia , Trypanosoma cruzi/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/prevenção & controle , Doença de Chagas/parasitologia , Chlorocebus aethiops , Fibrose/imunologia , Fibrose/prevenção & controle , Galactosídeos/imunologia , Galectina 3/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miocárdio/imunologia , Parasitemia , Receptores de Superfície Celular/imunologia , Receptores Toll-Like/imunologia , Células Vero
9.
J Autoimmun ; 60: 59-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25975491

RESUMO

Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory to existing conventional and biologic therapies, and hence successful development of novel treatments remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule analogue, SMA-12b, of an immunomodulatory parasitic worm product, ES-62, which acts both prophylactically and therapeutically against collagen-induced arthritis (CIA) in mice. Mechanistic analysis revealed that SMA-12b modifies the expression of a number of inflammatory response genes, particularly those associated with the inflammasome in mouse bone marrow-derived macrophages and indeed IL-1ß was the most down-regulated gene. Consistent with this, IL-1ß was significantly reduced in the joints of mice with CIA treated with SMA-12b. SMA-12b also increased the expression of a number of genes associated with anti-oxidant responses that are controlled by the transcription factor NRF2 and critically, was unable to inhibit expression of IL-1ß by macrophages derived from the bone marrow of NRF2(-/-) mice. Collectively, these data suggest that SMA-12b could provide the basis of an entirely novel approach to fulfilling the urgent need for new treatments for RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Proteínas de Helminto/farmacologia , Interleucina-1beta/biossíntese , Fator 2 Relacionado a NF-E2/genética , Acanthocheilonema/metabolismo , Animais , Artrite Experimental/prevenção & controle , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/prevenção & controle , Colágeno , Gerbillinae , Inflamassomos/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Articulações/imunologia , Articulações/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/imunologia
10.
Exp Parasitol ; 158: 18-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25836375

RESUMO

ES-62 is the major secreted protein of the rodent filarial nematode Acanthocheilonema viteae. The molecule contains covalently attached phosphorylcholine (PC) residues, which confer anti-inflammatory properties on ES-62, underpinning the idea that drugs based on this active moiety may have therapeutic potential in human diseases associated with aberrant inflammation. Here we demonstrate that two synthetic small molecule analogues (SMAs) of ES-62 termed SMA 11a and SMA 12b are protective in the oxazolone-induced acute allergic contact dermatitis mouse model of skin inflammation, as measured by a significant reduction in ear inflammation following their administration before oxazolone sensitisation and before oxazolone challenge. Furthermore, it was found that when tested, 12b was effective at reducing ear swelling even when first administered before challenge. Histological analysis of the ears showed elevated cellular infiltration and collagen deposition in oxazolone-treated mice both of which were reduced by treatment with the two SMAs. Likewise, the oxazolone-induced increase in IFNγ mRNA in the ears was reduced but no effect on other cytokines investigated was observed. Finally, no influence on the mast cell populations in the ear was observed.


Assuntos
Acanthocheilonema/imunologia , Dermatite Alérgica de Contato/imunologia , Proteínas de Helminto/imunologia , Otite Externa/prevenção & controle , Adjuvantes Imunológicos/toxicidade , Animais , Dermatite Alérgica de Contato/parasitologia , Dermatite Alérgica de Contato/prevenção & controle , Modelos Animais de Doenças , Proteínas de Helminto/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Otite Externa/induzido quimicamente , Otite Externa/patologia , Oxazolona/toxicidade , Reação em Cadeia da Polimerase em Tempo Real
11.
Immunology ; 141(3): 457-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24708419

RESUMO

We have previously reported that ES-62, a molecule secreted by the parasitic filarial nematode Acanthocheilonema viteae, protects mice from developing collagen-induced arthritis (CIA). Together with increasing evidence that worm infection may protect against autoimmune conditions, this raises the possibility that ES-62 may have therapeutic potential in rheumatoid arthritis and hence, it is important to fully understand its mechanism of action. To this end, we have established to date that ES-62 protection in CIA is associated with suppressed T helper type 1 (Th1)/Th17 responses, reduced collagen-specific IgG2a antibodies and increased interleukin-10 (IL-10) production by splenocytes. IL-10-producing regulatory B cells have been proposed to suppress pathogenic Th1/Th17 responses in CIA: interestingly therefore, although the levels of IL-10-producing B cells were decreased in the spleens of mice with CIA, ES-62 was found to restore these to the levels found in naive mice. In addition, exposure to ES-62 decreased effector B-cell, particularly plasma cell, infiltration of the joints, and such infiltrating B cells showed dramatically reduced levels of Toll-like receptor 4 and the activation markers, CD80 and CD86. Collectively, this induction of hyporesponsiveness of effector B-cell responses, in the context of the resetting of the levels of IL-10-producing B cells, is suggestive of a modulation of the balance between effector and regulatory B-cell responses that may contribute to ES-62-mediated suppression of CIA-associated inflammation and inhibition of production of pathogenic collagen-specific IgG2a antibodies.


Assuntos
Antirreumáticos/farmacologia , Artrite Experimental/prevenção & controle , Linfócitos B/efeitos dos fármacos , Colágeno , Proteínas de Helminto/farmacologia , Interleucina-10/metabolismo , Articulações/efeitos dos fármacos , Plasmócitos/efeitos dos fármacos , Animais , Anticorpos/metabolismo , Antígenos CD/metabolismo , Artrite Experimental/sangue , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Colágeno/imunologia , Articulações/imunologia , Articulações/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Plasmócitos/imunologia , Plasmócitos/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Receptor 4 Toll-Like/metabolismo
12.
Front Trop Dis ; 42024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38500783

RESUMO

The parasitic worm-derived immunomodulator, ES-62 rescues defective levels of IL-10-producing regulatory B cells (Bregs) and suppresses chronic Th1/Th17-driven inflammation to protect against joint destruction in the mouse collagen-induced arthritis (CIA) model of rheumatoid arthritis. Such autoimmune arthritis is also associated with dysbiosis of the gut microbiota and disruption of intestinal barrier integrity. We recently further exploited the CIA model to show that ES-62's prevention of joint destruction is associated with protection of intestinal barrier integrity and normalization of the gut microbiota, thereby suppressing the gut pathology that precedes the onset of autoimmunity and joint damage in CIA-mice. As the status of the gut microbiota impacts on immune responses by influencing haematopoiesis, we have therefore investigated whether ES-62 harnesses the homeostatic mechanisms regulating this gut-bone marrow (BM) axis to resolve the chronic inflammation promoting autoimmunity and joint destruction in CIA. Reflecting this, ES-62 was found to counteract the BM myeloid/lymphoid bias typically associated with chronic inflammation and infection. This was achieved primarily by ES-62 acting to maintain the levels of lymphoid lineages (B220+ and CD3+ cells) observed in naïve, healthy mice but lost from the BM of CIA-mice. Moreover, ES-62's ability to prevent bone-destroying osteoclastogenesis was found to be associated with its suppression of CIA-induced upregulation of osteoclast progenitors (OCPs) in the BM. Critically, and supporting ES-62's targeting of the gut-BM axis, this rewiring of inflammatory haematopoiesis was lost in mice with a depleted microbiome. Underlining the importance of ES-62's actions in restoring steady-state haematopoiesis, the BM levels of B and T lymphoid cells were shown to be inversely correlated, whilst the levels of OCPs positively correlated, with the severity of joint damage in CIA-mice.

13.
Arthritis Rheum ; 64(10): 3168-78, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22729944

RESUMO

OBJECTIVE: Among many survival strategies, parasitic worms secrete molecules that modulate host immune responses. One such product, ES-62, is protective against collagen-induced arthritis (CIA), a model of rheumatoid arthritis (RA). Since interleukin-17 (IL-17) has been reported to play a pathogenic role in the development of RA, this study was undertaken to investigate whether targeting of IL-17 may explain the protection against CIA afforded by ES-62. METHODS: DBA/1 mice progressively display arthritis following immunization with type II collagen. The protective effects of ES-62 were assessed by determination of cytokine levels, flow cytometric analysis of relevant cell populations, and in situ analysis of joint inflammation in mice with CIA. RESULTS: ES-62 was found to down-regulate IL-17 responses in mice with CIA. First, it acted to inhibit priming and polarization of IL-17 responses by targeting a complex IL-17-producing network, involving signaling between dendritic cells and γ/δ or CD4+ T cells. In addition, ES-62 directly targeted Th17 cells by down-regulating myeloid differentiation factor 88 expression to suppress responses mediated by IL-1 and Toll-like receptor ligands. Moreover, ES-62 modulated the migration of γ/δ T cells and this was reflected by direct suppression of CD44 up-regulation and, as evidenced by in situ analysis, dramatically reduced levels of IL-17-producing cells, including lymphocytes, infiltrating the joint. Finally, there was strong suppression of IL-17 production by cells resident in the joint, such as osteoclasts within the bone areas. CONCLUSION: Our findings indicate that ES-62 treatment of mice with CIA leads to unique multisite manipulation of the initiation and effector phases of the IL-17 inflammatory network. ES-62 could be exploited in the development of novel therapeutics for RA.


Assuntos
Artrite Experimental/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Proteínas de Helminto/farmacologia , Interleucina-17/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Articulações/efeitos dos fármacos , Articulações/metabolismo , Articulações/patologia , Masculino , Camundongos , Regulação para Cima
15.
Front Immunol ; 13: 847581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371069

RESUMO

Synovial fibroblasts have emerged as critical underlying factors to perpetuate chronic joint inflammation in Rheumatoid Arthritis. Like any other cell, synovial fibroblasts are covered with a complex layer of glycans that can change in response to extracellular signals, such as inflammation. We have previously shown that inflammatory synovial fibroblasts show decreased levels of sialic acid, but our understanding of sialic acid-dependent pathophysiological pathways in these stromal cells is still very limited. In this report, we used in vivo and in vitro studies with exogenous sialidases and RNA sequencing to investigate the responses of murine synovial fibroblasts upon desialylation. Our results show that hyposialylated fibroblasts present a dysregulated migratory ability and an activated phenotype characterized by the expression of inflammatory mediators, such as cytokines and chemokines, and anti-viral related mechanisms. Removal of surface sialic acid also affected the expression of sialyltransferases, revealing the existence of a positive feedback to sustain reduced sialylation. Moreover, we demonstrate that synovial fibroblasts subsets have distinct sialyltransferase expression profiles, both in healthy and arthritic mice. These findings underline the ability of sialic acid to modulate homeostatic and inflammatory responses in non-immune synovial fibroblasts, suggesting that sialylation plays a key role in perpetuating local inflammation in the arthritic joint.


Assuntos
Artrite Reumatoide , Membrana Sinovial , Animais , Movimento Celular , Fibroblastos/metabolismo , Inflamação , Camundongos , Ácido N-Acetilneuramínico/metabolismo
16.
Front Immunol ; 12: 809896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095899

RESUMO

The guanine nucleotide exchange factor cytohesin-2 (ARNO) is a major activator of the small GTPase ARF6 that has been shown to play an important role(s) in cell adhesion, migration and cytoskeleton reorganization in various cell types and models of disease. Interestingly, dysregulated cell migration, in tandem with hyper-inflammatory responses, is one of the hallmarks associated with activated synovial fibroblasts (SFs) during chronic inflammatory joint diseases, like rheumatoid arthritis. The role of ARNO in this process has previously been unexplored but we hypothesized that the pro-inflammatory milieu of inflamed joints locally induces activation of ARNO-mediated pathways in SFs, promoting an invasive cell phenotype that ultimately leads to bone and cartilage damage. Thus, we used small interference RNA to investigate the impact of ARNO on the pathological migration and inflammatory responses of murine SFs, revealing a fully functional ARNO-ARF6 pathway which can be rapidly activated by IL-1ß. Such signalling promotes cell migration and formation of focal adhesions. Unexpectedly, ARNO was also shown to modulate SF-inflammatory responses, dictating their precise cytokine and chemokine expression profile. Our results uncover a novel role for ARNO in SF-dependent inflammation, that potentially links pathogenic migration with initiation of local joint inflammation, offering new approaches for targeting the fibroblast compartment in chronic arthritis and joint disease.


Assuntos
Movimento Celular/genética , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/genética , Imunomodulação/genética , Membrana Sinovial/citologia , Fator 6 de Ribosilação do ADP/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Interleucina-1beta/metabolismo , Camundongos , Fosforilação , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
17.
Nat Commun ; 12(1): 2343, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879788

RESUMO

In healthy joints, synovial fibroblasts (SFs) provide the microenvironment required to mediate homeostasis, but these cells adopt a pathological function in rheumatoid arthritis (RA). Carbohydrates (glycans) on cell surfaces are fundamental regulators of the interactions between stromal and immune cells, but little is known about the role of the SF glycome in joint inflammation. Here we study stromal guided pathophysiology by mapping SFs glycosylation pathways. Combining transcriptomic and glycomic analysis, we show that transformation of fibroblasts into pro-inflammatory cells is associated with glycan remodeling, a process that involves TNF-dependent inhibition of the glycosyltransferase ST6Gal1 and α2-6 sialylation. SF sialylation correlates with distinct functional subsets in murine experimental arthritis and remission stages in human RA. We propose that pro-inflammatory cytokines remodel the SF-glycome, converting the synovium into an under-sialylated and highly pro-inflammatory microenvironment. These results highlight the importance of glycosylation in stromal immunology and joint inflammation.


Assuntos
Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Ácidos Siálicos/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Animais , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Linhagem Celular , Citocinas/metabolismo , Regulação para Baixo , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicosilação , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos DBA , Fenótipo , RNA-Seq , Sialiltransferases/genética , Sialiltransferases/metabolismo , Membrana Sinovial/imunologia , Transcriptoma , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
18.
Nat Commun ; 10(1): 1554, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952846

RESUMO

The human immune system has evolved in the context of our colonisation by bacteria, viruses, fungi and parasitic helminths. Reflecting this, the rapid eradication of pathogens appears to have resulted in reduced microbiome diversity and generation of chronically activated immune systems, presaging the recent rise of allergic, autoimmune and metabolic disorders. Certainly, gastrointestinal helminths can protect against gut and lung mucosa inflammatory conditions by modulating the microbiome and suppressing the chronic inflammation associated with dysbiosis. Here, we employ ES-62, an immunomodulator secreted by tissue-dwelling Acanthocheilonema viteae to show that helminth-modulation of the gut microbiome does not require live infection with gastrointestinal-based worms nor is protection restricted to mucosal diseases. Specifically, subcutaneous administration of this defined immunomodulator affords protection against joint disease in collagen-induced arthritis, a mouse model of rheumatoid arthritis, which is associated with normalisation of gut microbiota and prevention of loss of intestinal barrier integrity.


Assuntos
Antibacterianos/farmacologia , Artrite Experimental/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Proteínas de Helminto/uso terapêutico , Animais , Artrite Experimental/imunologia , Proteínas de Helminto/farmacologia , Imunomodulação , Masculino , Camundongos
19.
Front Immunol ; 9: 1016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867986

RESUMO

The immunomodulatory actions of parasitic helminth excretory-secretory (ES) products that serendipitously protect against development of chronic inflammatory disorders are well established: however, knowledge of the interaction between ES products and the host musculoskeletal system in such diseases is limited. In this study, we have focused on ES-62, a glycoprotein secreted by the rodent filarial nematode Acanthocheilonema viteae that is immunomodulatory by virtue of covalently attached phosphorylcholine (PC) moieties, and also two synthetic drug-like PC-based small molecule analogues (SMAs) that mimic ES-62's immunomodulatory activity. We have previously shown that each of these molecules prevents development of pathology in collagen-induced arthritis (CIA), a model of the musculoskeletal disease rheumatoid arthritis (RA) and reflecting this, we now report that ES-62 and its SMAs, modify bone remodeling by altering bone marrow progenitors and thus impacting on osteoclastogenesis. Consistent with this, we find that these molecules inhibit functional osteoclast differentiation in vitro. Furthermore, this appears to be achieved by induction of anti-oxidant response gene expression, thereby resulting in reduction of the reactive oxygen species production that is necessary for the increased osteoclastogenesis witnessed in musculoskeletal diseases like RA.


Assuntos
Artrite Experimental/prevenção & controle , Proteínas de Helminto/farmacologia , Fatores Imunológicos/farmacologia , Osteogênese/efeitos dos fármacos , Acanthocheilonema/química , Animais , Masculino , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
20.
Sex Med Rev ; 5(2): 244-251, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28143706

RESUMO

INTRODUCTION: Penile prosthesis implantation is believed to provide a high level of patient satisfaction. The International Index of Erectile Function and the Erectile Dysfunction Inventory of Treatment Satisfaction are two validated questionnaires that have been used to assess this outcome. The lack of a tool specifically validated for patients undergoing penile prosthesis surgery has led to the use of heterogeneous methods to assess patient satisfaction. AIM: To review the assessment of patient satisfaction with penile prosthesis surgery according to several factors. METHODS: A literature review was performed through PubMed from January 2000 through February 2016 addressing patient satisfaction after penile prosthesis surgery. MAIN OUTCOME MEASURES: Patient satisfaction according to the characteristics of penile prosthesis devices and different clinical contexts. RESULTS: Forty-eight articles were selected. Of these, 66.2% used non-validated questionnaires to assess patient satisfaction. Device characteristics, patient comorbidities, and partner profile are potential factors that can determine patient satisfaction. CONCLUSION: Patient satisfaction is a meaningful outcome of penile prosthesis surgery modulated by different conditions. The rigor of this assessment in the literature is limited. The validation of a scale designed for patients with penile prosthesis surgery is needed to optimize clinical practice. Akakpo W, Pineda MA, Burnett AL. Critical Analysis of Satisfaction Assessment After Penile Prosthesis Surgery. Sex Med Rev 2017;5:244-251.


Assuntos
Prótese de Pênis/psicologia , Satisfação Pessoal , Humanos , Masculino , Implante Peniano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA