Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Glob Chang Biol ; 22(5): 1677-89, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26643922

RESUMO

The surge in global efforts to understand the causes and consequences of drought on forest ecosystems has tended to focus on specific impacts such as mortality. We propose an ecoclimatic framework that takes a broader view of the ecological relevance of water deficits, linking elements of exposure and resilience to cumulative impacts on a range of ecosystem processes. This ecoclimatic framework is underpinned by two hypotheses: (i) exposure to water deficit can be represented probabilistically and used to estimate exposure thresholds across different vegetation types or ecosystems; and (ii) the cumulative impact of a series of water deficit events is defined by attributes governing the resistance and recovery of the affected processes. We present case studies comprising Pinus edulis and Eucalyptus globulus, tree species with contrasting ecological strategies, which demonstrate how links between exposure and resilience can be examined within our proposed framework. These examples reveal how climatic thresholds can be defined along a continuum of vegetation functional responses to water deficit regimes. The strength of this framework lies in identifying climatic thresholds on vegetation function in the absence of more complete mechanistic understanding, thereby guiding the formulation, application and benchmarking of more detailed modelling.


Assuntos
Mudança Climática , Secas , Eucalyptus/fisiologia , Florestas , Pinus/fisiologia , Árvores/fisiologia
2.
Glob Chang Biol ; 22(6): 2106-24, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26683241

RESUMO

Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures).


Assuntos
Biomassa , Ecossistema , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Austrália , Carbono , Sequestro de Carbono , Eucalyptus/crescimento & desenvolvimento , Florestas , Caules de Planta/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento
3.
New Phytol ; 197(3): 862-872, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23228042

RESUMO

Plant survival during drought requires adequate hydration in living tissues and carbohydrate reserves for maintenance and recovery. We hypothesized that tree growth and hydraulic strategy determines the intensity and duration of the 'physiological drought', thereby affecting the relative contributions of loss of hydraulic function and carbohydrate depletion during mortality. We compared patterns in growth rate, water relations, gas exchange and carbohydrate dynamics in three tree species subjected to prolonged drought. Two Eucalyptus species (E. globulus, E. smithii) exhibited high growth rates and water-use resulting in rapid declines in water status and hydraulic conductance. In contrast, conservative growth and water relations in Pinus radiata resulted in longer periods of negative carbon balance and significant depletion of stored carbohydrates in all organs. The ongoing demand for carbohydrates from sustained respiration highlighted the role that duration of drought plays in facilitating carbohydrate consumption. Two drought strategies were revealed, differentiated by plant regulation of water status: plants maximized gas exchange, but were exposed to low water potentials and rapid hydraulic dysfunction; and tight regulation of gas exchange at the cost of carbohydrate depletion. These findings provide evidence for a relationship between hydraulic regulation of water status and carbohydrate depletion during terminal drought.


Assuntos
Metabolismo dos Carboidratos , Secas , Eucalyptus/fisiologia , Pinus/fisiologia , Água/metabolismo , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Pressão , Fatores de Tempo
5.
J Exp Bot ; 64(6): 1625-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23382548

RESUMO

Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source-sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses.


Assuntos
Eucalyptus/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Estresse Fisiológico , Dióxido de Carbono/metabolismo , Dissacarídeos/metabolismo , Eucalyptus/metabolismo , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Solubilidade , Amido/metabolismo , Sacarose/metabolismo , Fatores de Tempo , Água/metabolismo
6.
Sci Total Environ ; 760: 144069, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348155

RESUMO

Riparian forests in floodplains are occasionally or regularly submerged by flooding. However, controversy exists regarding the effects of flooding on water use in riparian forests, and this controversy severely restricts our ability to better utilize limited water resources to restore damaged riparian forests in arid regions.The evapotranspiration (Et) and transpiration (T) of riparian P. euphratica forests in the arid regions of northwestern China were determined using eddy covariance and sap flow technology across a 3-year period. Fortunately, the flooding introduced by ecological water diversion was occurred in 2014 and 2016 but not in 2015. Our results showed that the magnitude and seasonal pattern of Et across 3 years was comparable (approximately 900 mm), but the T was higher in 2015 (431 mm) than in the other two years (288 mm in 2014 and 290 mm in 2016). The interannual patterns in the transpiration were consistent with the net ecosystem productivity at the site. Given the similar meteorological conditions (e.g. net radiation, temperature, relative humidity, and vapor pressure deficit) among the 3 years, two aspects may contributed to the suppressed tree water use and productivity under flooding: 1) the increased soil salinity reduce the roots water uptake from soil by increasing root water potential via osmotic adjustment; and 2) the depressed tree growth (e.g. the leaf area) via suspended water upward transport along soil-plant-atmosphere continuum. Although flooding is widely known beneficial for the regeneration, we suggest that it is not appropriate for the rejuvenation of phreatophyte (e.g., Populus spp.) in arid regions. Our results were drawn from only three years of measurement and therefore longer time series are needed to confirm or refine those conclusions.


Assuntos
Rios , Árvores , China , Ecossistema , Florestas , Água
7.
Plant Cell Environ ; 32(8): 1004-14, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19344333

RESUMO

Defoliation can reduce net fixation of atmospheric CO(2) by the canopy, but increase the intensity and duration of photosynthetically active radiation on stems. Stem CO(2) flux and leaf gas exchange in young Eucalyptus globulus seedlings were measured to assess the impact of defoliation on these processes and to determine the potential contribution of re-fixation by photosynthetic inner bark in offsetting the effects of defoliation in a woody species. Pot and field trials examined how artificial defoliation of the canopy affected the photosynthetic characteristics of main stems of young Eucalyptus globulus seedlings. Defoliated potted seedlings were characterized by transient increases in foliar photosynthetic rates and concomitant decreases in stem CO(2) fluxes (both in the dark and light). Defoliated field-grown seedlings showed similar stem CO(2) flux responses, but of reduced magnitude. Despite demonstrating increased re-fixation capability, defoliated potted-seedlings had slowed stem growth. The green stem of seedlings exhibited largely shade-adapted characteristics. Defoliation reduced stem chlorophyll a/b ratio and increased carotenoid concentration. An increased capacity to re-fix internally respired CO(2) (up to 96%) suggested that stem re-fixation represents a previously unexplored mechanism to minimize the impact of foliar loss by maximizing the contribution of all photosynthetic tissues, particularly for young seedlings.


Assuntos
Dióxido de Carbono/metabolismo , Eucalyptus/metabolismo , Fotossíntese , Caules de Planta/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Eucalyptus/crescimento & desenvolvimento , Luz , Modelos Biológicos , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
8.
Tree Physiol ; 29(6): 753-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19324694

RESUMO

In woody species, potential mechanisms to compensate for tissue loss to herbivory and diseases have been related to post-event shifts in growth, biomass and internal resource allocation patterns, as modulated by external resource limitations. We examined the interactive effects of belowground resource limitations by varying nutrient and water availability, and aboveground carbon limitation imposed by a single defoliation event (40% leaf removal) on stem growth, whole-tree and within-tree resource allocation patterns (total non-structural carbohydrate and nitrogen) and below- and aboveground biomass allocation patterns in 8-month-old, field-grown Eucalyptus globulus Labill. saplings. Two months after treatments were imposed, the direction of the stem growth response to defoliation depended on the abiotic treatment. Five months after defoliation, however, we found little evidence that resource availability constrained the expression of tolerance to defoliation. With the exception of the combined low-nutrient and low-water supply treatment, saplings grown with (1) adequate water and nutrient supplies and even with (2) low-water supply or (3) low-nutrient supply were able to compensate for the 40% foliage loss. The observed compensatory responses were attributed to the activation of several short- and longer-term physiological mechanisms including reduced biomass allocation to coarse roots, mobilization of carbohydrate reserves, robust internal N dynamics and increased ratio of foliage to wood dry mass.


Assuntos
Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Caules de Planta/fisiologia
9.
Sci Total Environ ; 648: 1421-1430, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340287

RESUMO

Knowledge of forest water use is crucial to water resources managers, especially in arid environments. Flood irrigation has sometimes been used to ameliorate forest decline, however, there has only been limited research on vegetation responses to these interventions. We undertook a study to quantify evapotranspiration (ET) and its components, transpiration (T) and evaporation (E), of two Populus euphratica Oliv. stands (MA: middle-aged and OA: old-aged) with and without flood irrigation in the lower Heihe River Basin of NW China. ET and T were measured using eddy covariance and sap flow methods, respectively. Understory E was estimated by difference. Annual ET was 766.4 mm in the MA stand and 532.5 mm in the OA stand with an average of 4.2 and 2.9 mm d-1 during the growing season, respectively. ET of the MA stand was 44% higher than that of the OA stand, with contributions of 28% and 16% from E and T. Despite stand density, leaf area index and canopy cover being higher in the MA than OA stand sapwood area within the two stands was similar (MA 6.04 m2 ha-1 and OA 6.02 m2 ha-1). We hypothesised lower understory E and a lower E to ET ratio in the MA stand than OA stand. However, E was approximately 63% of ET in both stands. Therefore, we conclude that differences in ET, T and E were mainly associated with the flood irrigation. This was further supported by the comparable ET between the OA stand and the other studies in arid regions of Central Asia. In conclusion, flood irrigation has a less significant effect on canopy water use (T) than understory E suggesting alternatives to flood irrigation might be more appropriate in this water-limited ecosystem.

11.
PLoS One ; 13(1): e0189635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293528

RESUMO

Phenotypic responses to rising CO2 will have consequences for the productivity and management of the world's forests. This has been demonstrated through extensive free air and controlled environment CO2 enrichment studies. However intraspecific variation in plasticity remains poorly characterised in trees, with the capacity to produce unexpected trends in response to CO2 across a species distribution. Here we examined variation in photosynthesis traits across 43 provenances of a widespread, genetically diverse eucalypt, E. camaldulensis, under ambient and elevated CO2 conditions. Genetic variation suggestive of local adaptation was identified for some traits under ambient conditions. Evidence of genotype by CO2 interaction in responsiveness was limited, however support was identified for quantum yield (φ). In this case local adaptation was invoked to explain trends in provenance variation in response. The results suggest potential for genetic variation to influence a limited set of photosynthetic responses to rising CO2 in seedlings of E. camaldulensis, however further assessment in mature stage plants in linkage with growth and fitness traits is needed to understand whether trends in φ could have broader implications for productivity of red gum forests.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese , Árvores/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
12.
Funct Plant Biol ; 46(1): 1-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939254

RESUMO

Elevated atmospheric CO2 concentration (e[CO2]) can stimulate the photosynthesis and productivity of C3 species including food and forest crops. Intraspecific variation in responsiveness to e[CO2] can be exploited to increase productivity under e[CO2]. However, active selection of genotypes to increase productivity under e[CO2] is rarely performed across a wide range of germplasm, because of constraints of space and the cost of CO2 fumigation facilities. If we are to capitalise on recent advances in whole genome sequencing, approaches are required to help overcome these issues of space and cost. Here, we discuss the advantage of applying prescreening as a tool in large genome×e[CO2] experiments, where a surrogate for e[CO2] was used to select cultivars for more detailed analysis under e[CO2] conditions. We discuss why phenotypic prescreening in population-wide screening for e[CO2] responsiveness is necessary, what approaches could be used for prescreening for e[CO2] responsiveness, and how the data can be used to improve genetic selection of high-performing cultivars. We do this within the framework of understanding the strengths and limitations of genotype-phenotype mapping.


Assuntos
Dióxido de Carbono/metabolismo , Plantas/genética , Botânica/métodos , Genótipo , Fenótipo , Plantas/metabolismo
13.
Tree Physiol ; 27(7): 1053-63, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17403659

RESUMO

Plant responses to defoliation are complex. We established a field experiment in a nine-month-old Eucalyptus globulus Labill. plantation to examine the effects of pattern (upper crown versus lower crown removal), frequency (single, double or triple defoliation within a 12-month period) and severity (25 versus 38% of leaf area removed) of defoliation and the effect of soil nitrogen (N) on photosynthetic processes and stem growth. The photosynthetic responses observed following defoliation could be attributed to changes in source:sink ratios. Light-saturated CO(2) uptake (A(max)) increased with increasing severity and frequency of defoliation irrespective of defoliation pattern. Seedlings defoliated in autumn did not exhibit increases in A(max) until the following spring, whereas there was no such delay in photosynthetic responses associated with spring defoliation. Application of N before defoliation allowed trees to compensate for the effect of defoliation on stem diameter growth, which could not be explained simply in terms of increases in A(max). The observed increases in stem diameter increment following N fertilization of defoliated trees suggested increases in leaf area development, and there were changes in the leaf area:leaf dry mass ratio that may have increased light absorption by the crown. Nitrogen fertilization also increased partitioning of dry mass to branches at the expense of main stems, suggesting that N supply was important in rebuilding crowns following a defoliation event.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Biomassa , Dióxido de Carbono/metabolismo , Eucalyptus/metabolismo , Folhas de Planta/metabolismo
14.
Tree Physiol ; 37(2): 220-235, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881800

RESUMO

Defoliation may initiate physiological recovery and chemical defence mechanisms that allow a plant to improve fitness after damage. Such responses may result in changes in plant resource allocation that influence growth and foliar chemistry. In this study, we investigated the nature and stability of the defoliation response of juvenile plants from three divergent populations of Eucalyptus globulus Labill. A partial defoliation treatment that removed all upper crown leaves and the apical buds was applied to plants sourced from eight families from each of three populations representing contrasting chemical resistance to mammalian herbivory. Growth, photosynthetic rate and chlorophyll content were assessed pre-defoliation and periodically up to 12 weeks post-defoliation. The content of key plant primary and secondary metabolites was assessed pre-defoliation, at 12 weeks post-defoliation in the old foliage (positioned below the point of defoliation) and in the new foliage of the control plants and regrowth (from axillary buds) on the defoliated plants. There were clear treatment impacts on physiological responses, growth and foliar chemical traits, but despite significant constitutive differences in physiology, growth and chemistry the three E. globulus populations did not vary in their response to foliage loss. Distinct physiological responses to defoliation were observed with treatment plants showing significant up-regulation of photosynthetic rate and increased chlorophyll content in the old foliage remaining in the lower crown. There was a significant increase in the concentrations of a number of foliar chemical compounds in the regrowth arising from previously dormant axillary buds compared with new growth derived from apical meristems. There were changes in biomass allocation; defoliated plants had increased branching and leaf biomass, with changes in regrowth morphology to increase light capture. This study argues for multiple responses of E. globulus juveniles to defoliation involving apical bud loss, including elevated chemical defences matched with increased growth. From a chemical defence perspective, these responses create an enhanced chemical mosaic to the herbivore, with leaves remaining after partial browsing potentially being more palatable than the regrowth. This study demonstrates the multiple independent strategies plants may use to respond to partial defoliation and emphasizes the dynamic interplay between growth and defence in the recovery response.


Assuntos
Eucalyptus/genética , Eucalyptus/metabolismo , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais/genética , Fotossíntese/fisiologia , Caules de Planta/metabolismo
15.
Tree Physiol ; 37(2): 236-245, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28399262

RESUMO

The complex regulatory system controlling stomata involves physical and chemical signals that affect guard cell turgor to bring about changes in stomatal conductance (gs). Abscisic acid (ABA) closes stomata, yet the mechanisms controlling foliar ABA status in tree species remain unclear. The importance of foliage-derived ABA in regulating gas exchange was evaluated under treatments that affected phloem export through girdling and reduced water availability in the tree species, Pinus radiata (D. Don). Branch- and whole-plant girdling increased foliar ABA levels leading to declines in gs, despite no change in plant water status. Changes in gs were largely independent of the more transient increases in foliar non-structural carbohydrates (NSC), suggesting that gradual accumulation of foliar ABA was the primary mechanism for reductions in gs and assimilation. Whole-plant girdling eventually reduced root NSC, hindering root water uptake and decreasing foliar water potential, causing a dramatic increase in ABA level in leaves and concentrations in the xylem sap of shoots (4032 ng ml-1), while root xylem sap concentrations remained low (43 ng ml-1). Contrastingly, the drought treatment caused similar increases in xylem sap ABA in both roots and shoots, suggesting that declines in water potential result in relatively consistent changes in ABA along the hydraulic pathway. ABA levels in plant canopies can be regulated independently of changes in root water status triggered by changes by both phloem export and foliar water status.


Assuntos
Ácido Abscísico/metabolismo , Pinus/metabolismo , Pinus/fisiologia , Transpiração Vegetal/fisiologia , Transporte Biológico/fisiologia , Floema/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia
16.
Nat Ecol Evol ; 1(9): 1285-1291, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29046541

RESUMO

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.


Assuntos
Carbono/deficiência , Secas , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Mudança Climática , Cycadopsida/fisiologia , Magnoliopsida/fisiologia , Dinâmica Populacional , Estresse Fisiológico
17.
Tree Physiol ; 26(8): 989-99, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16651248

RESUMO

Intumescences or abnormal, non-pathogenic, blister-like protuberant growths, form on Eucalyptus globulus Labill. and, to a much lesser extent, Eucalyptus nitens (Deane and Maiden) Maiden leaves when plants are grown in a high relative humidity environment. We examined the histology of intumescences and their effects on leaf photosynthetic processes. Intumescences were induced by placing E. globulus and E. nitens seedlings in a relative humidity of 80% in a greenhouse for 5 days. Symptomatic and asymptomatic leaves of plants with intumescence development were compared with leaves of control plants. Light-saturated carbon dioxide (CO(2)) assimilation (A(max)) and responses of CO(2) assimilation (A) to varying intercellular CO(2) partial pressure (C(i)) were measured. Symptomatic and asymptomatic leaf samples were fixed and sectioned and cellular structure was examined. Intumescences greatly reduced the photosynthetic capacity of E. globulus leaves and were associated with reduced electron transport rate and ribulose bisphosphate (RuBP) regeneration capacity. Tissue necrotization and cellular collapse of the palisade mesophyll and deposition of phenolic compounds in the affected areas, probably reduced light penetration to photosynthesizing cells as well as reducing the amount of photosynthesizing tissue. Photosynthetic capacity of E. nitens was unaffected. The intumescences resembled simple lenticels, both morphologically and developmentally. To our knowledge, this is the first time that lenticel-like structures developed in response to environmental conditions have been described on leaves.


Assuntos
Eucalyptus/metabolismo , Folhas de Planta/anatomia & histologia , Plântula/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo
18.
Tree Physiol ; 35(11): 1146-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26423132

RESUMO

Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Carboidratos/química , Laboratórios/normas , Árvores/química , Técnicas de Química Analítica , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Especificidade da Espécie , Amido , Árvores/metabolismo
19.
Ecol Evol ; 4(7): 1088-101, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772285

RESUMO

Increases in drought and temperature stress in forest and woodland ecosystems are thought to be responsible for the rise in episodic mortality events observed globally. However, key climatic drivers common to mortality events and the impacts of future extreme droughts on tree survival have not been evaluated. Here, we characterize climatic drivers associated with documented tree die-off events across Australia using standardized climatic indices to represent the key dimensions of drought stress for a range of vegetation types. We identify a common probabilistic threshold associated with an increased risk of die-off across all the sites that we examined. We show that observed die-off events occur when water deficits and maximum temperatures are high and exist outside 98% of the observed range in drought intensity; this threshold was evident at all sites regardless of vegetation type and climate. The observed die-off events also coincided with at least one heat wave (three consecutive days above the 90th percentile for maximum temperature), emphasizing a pivotal role of heat stress in amplifying tree die-off and mortality processes. The joint drought intensity and maximum temperature distributions were modeled for each site to describe the co-occurrence of both hot and dry conditions and evaluate future shifts in climatic thresholds associated with the die-off events. Under a relatively dry and moderate warming scenario, the frequency of droughts capable of inducing significant tree die-off across Australia could increase from 1 in 24 years to 1 in 15 years by 2050, accompanied by a doubling in the occurrence of associated heat waves. By defining commonalities in drought conditions capable of inducing tree die-off, we show a strong interactive effect of water and high temperature stress and provide a consistent approach for assessing changes in the exposure of ecosystems to extreme drought events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA