Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Chemistry ; 29(35): e202300445, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37071327

RESUMO

The extreme sensitivity of trivalent lanthanide ions to crystal field variations led to the emergence of single-molecule magnetic switching under various stimuli. The use of pressure as an external stimulus instead of classic light irradiation, oxidation or any chemical reactions allows a fine tuning of the magnetic modulation. Here the well-known pure isotopically enriched [162 Dy(tta)3 (L)]⋅C6 H14 (162 Dy) Single-Molecule Magnet (SMM) (tta- =2-2-thenoyltrifluoroacetonate and L=4,5-bis(propylthio)-tetrathiafulvalene-2-(2-pyridyl)benzimidazole-methyl-2-pyridine) was experimentally investigated by single-crystal diffraction and squid magnetometry under high applied pressures. Both reversible piezochromic properties and pressure modulation of the slow magnetic relaxation behavior were demonstrated and supported by ab initio calculations. The magnetic study of the diluted sample [162 Dy0.05 Y0.95 (tta)3 (L)]⋅C6 H14 (162 Dy@Y) indicated that variations in the electronic structure have mainly intermolecular origin with weak intramolecular contribution. Quantitative magnetic interpretation concludes to a deterioration of the Orbach process for the benefit of both Raman and QTM mechanisms under applied pressure.


Assuntos
Compostos Heterocíclicos , Imãs , Disprósio , Fenômenos Magnéticos
2.
Chemistry ; 28(40): e202200620, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35416351

RESUMO

Paddlewheel-type binuclear complexes featuring metal-metal bonding have been the subject of widespread interest due to fundamental concern in their electronic structures and potential applications. Here, we explore the molecular and electronic structures of diiron(II,II) complexes with N,N'-diarylformamidinate ligands. While a paddlewheel-type diiron(II,II) complex with N,N'-diphenylformamidinate ligands (DPhF) exhibits the centrosymmetric [Fe2 (µ-DPhF)4 ] structure, a minor alteration in the ligand system, i. e., switching from phenyl to p-tolyl N-substituted formamidinate ligand (DTolF), resulted in the isolation of an unprecedented non-centrosymmetric [Fe(µ-DTolF)3 Fe(κ2 -DTolF)] complex. Both complexes were characterized using single-crystal X-ray diffraction, magnetic measurements, 57 Fe Mössbauer spectroscopy, and cyclic voltammetry along with high-level ab-initio calculations. The results provide a new view on a range of factors controlling the ground-state electronic configuration and structural diversity of homoleptic diiron(II,II) complexes. Model calculations determined that the Mayer bond orders for Fe-Fe interactions are significantly lower than 1 and equal to 0.15 and 0.28 for [Fe2 (µ-DPhF)4 ] and [Fe(µ-DTolF)3 Fe(κ2 -DTolF)], respectively.


Assuntos
Eletrônica , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Espectroscopia de Mossbauer
3.
Inorg Chem ; 61(35): 13817-13828, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35998671

RESUMO

A series of new CN-bridged coordination networks of different dimensionality and topology was obtained through the modification of reaction conditions between [Ni(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) and [W(CN)8]4-. The factors determining the reaction pathway are temperature and addition of the LiCl electrolyte. The products include three negatively charged frameworks incorporating Li+ guests: the 1D Li2[Ni(cyclam)][W(CN)8]·6H2O (1) straight chain, the 1D Li2[Ni(cyclam)][W(CN)8]·2H2O (2) zigzag chain, and the 2D Li2[Ni(cyclam)]3[W(CN)8]2·24H2O (3) honeycomb-like network, as well as the 3D two-fold interpenetrating [Ni(cyclam)]5[Ni(CN)4][W(CN)8]2·11H2O (4) network and the 1D [Ni(cyclam)][Ni(CN)4]·2H2O (5) chain, which result from partial decomposition of the starting complexes. Together with the previously characterized 3D [Ni(cyclam)]2[W(CN)8]·16H2O (6) network, they constitute the largest family of CN-bridged coordination polymers obtained from the same pair of building blocks. All compounds exhibit paramagnetic behavior because of the separation of paramagnetic nickel(II) centers through the diamagnetic polycyanidometallates. However, the presence of the photomagnetically active octacyanidotungstate(IV) ions allowed observation of the magnetic superexchange after the violet light excitation (405 nm) for compound 3, which constitutes the first example of the photomagnetic effect in a NiII-[WIV(CN)8] system. The photomagnetic investigations for fully hydrated and dehydrated sample of 3, as well as for the isostructural octacyanidomolybdate(IV)-based network are discussed.

4.
Inorg Chem ; 61(41): 16295-16306, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36197744

RESUMO

The structures and magnetic properties of photoresponsive magnets can be controlled or fine-tuned by visible light irradiation, which makes them appealing as candidates for ternary memory devices: photochromic and photomagnetic at the same time. One of the strategies for photoresponsive magnetic systems is the use of photochromic/photoswitchable molecules coordinated to paramagnetic metal centers to indirectly influence their magnetic properties. Herein, we present two erbium(III)-based coordination systems: a trinuclear molecule {[ErIII(BHT)3]3(dtepy)2}.4C5H12 (1) and a 1D coordination chain {[ErIII(BHT)3(azopy)}n·2C5H12 (2), where the bridging photochromic ligands belong to the class of diarylethenes: 1,2-bis((2-methyl-5-pyridyl)thie-3-yl)perfluorocyclopentene (dtepy) and 4,4'-azopyridine (azopy), respectively (BHT = 2,6-di-tert-butyl-4-methylphenolate). Both compounds show slow dynamics of magnetization, typical for single-molecule magnets (SMMs) as revealed by alternating current (AC) magnetic susceptibility measurements. The trinuclear compound 1 also shows an immediate color change from yellow to dark blue in response to near-UV irradiation. Such behavior is typical for the photoisomerization of the open form of the ligand into its closed form. The color change can be reversed by exposing the closed form to visible light. The chain-like compound 2, on the other hand, does not show significant signs of the expected trans-cis photoisomerization of the azopyridine in response to UV irradiation and does not appear to show photoswitching behavior.

5.
Phys Chem Chem Phys ; 24(39): 24439-24446, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36190462

RESUMO

A single crystal of [Co(NCS)2(4-methoxypyridine)2]n was obtained and investigated. The magnetic measurements performed along three perpendicular crystallographic directions are compared to the results obtained previously for a powder sample. The magnetic inter- and intrachain interactions do not differ, however, a change of the energy barrier of magnetic relaxations is obtained. For the single crystal sample the relaxation is much slower, which is attributed to the presence of longer chains, and show that below the ordering temperature the spin chains relax by the process that involves a single domain wall. Above the ordering temperature, a second relaxation process is observed, for which the relaxation time is temperature independent, indicating a negligible energy barrier. Such phenomenon was previously not observed for any of the powder samples of compounds from the [Co(NCS)2(ligand)2]n family.

6.
Chem Soc Rev ; 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32685956

RESUMO

Octacyanidometallates have been successfully employed in the design of heterometallic coordination systems offering a spectacular range of desired physical properties with great potential for technological applications. The [M(CN)8]n- ions comprise a series of complexes of heavy transition metals in high oxidation states, including NbIV, MoIV/V, WIV/V, and ReV. Since the discovery of the pioneering bimetallic {MnII4[MIV(CN)8]2} and {MnII9[MV(CN)8]6} (M = Mo, W) molecules in 2000, octacyanidometallates were fruitfully explored as precursors for the construction of diverse d-d or d-f coordination clusters and frameworks which could be obtained in the crystalline form under mild synthetic conditions. The primary interest in [M(CN)8]n--based networks was focused on their application as molecule-based magnets exhibiting long-range magnetic ordering resulting from the efficient intermetallic exchange coupling mediated by cyanido bridges. However, in the last few years, octacyanidometallate-based materials proved to offer varied and remarkable functionalities, becoming efficient building blocks for the construction of molecular nanomagnets, magnetic coolers, spin transition materials, photomagnets, solvato-magnetic materials, including molecular magnetic sponges, luminescent magnets, chiral magnets and photomagnets, SHG-active magnetic materials, pyro- and ferroelectrics, ionic conductors as well as electrochemical containers. Some of these materials can be processed into the nanoscale opening the route towards the development of magnetic, optical and electronic devices. In this review, we summarise all important achievements in the field of octacyanidometallate-based functional materials, with the particular attention to the most recent advances, and present a thorough discussion on non-trivial structural and electronic features of [M(CN)8]n- ions, which are purposefully explored to introduce desired physical properties and their combinations towards advanced multifunctional materials.

7.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443461

RESUMO

This work provides a summary of the preparation, structure, reactivity, physicochemical properties, and main uses of 1,2,5-thiadiazole 1,1-dioxides in chemistry and material sciences. An overview of all currently known structures containing the 1,2,5-thiadiazole 1,1-dioxide motif (including the anions radical species) is provided according to the Cambridge Structural Database search. The analysis of the bond lengths typical for neutral and anion radical species is performed, providing a useful tool for unambiguous assessment of the valence state of the dioxothiadiazole-based compounds based solely on the structural data. Theoretical methodologies used in the literature to describe the dioxothiadiazoles are also shortly discussed, together with the typical 'fingerprint' of the dioxothiadiazole ring reported by means of various spectroscopic techniques (NMR, IR, UV-Vis). The second part describes the synthetic strategies leading to 1,2,5-thiadiazole 1,1-dioxides followed by the discussion of their electrochemistry and reactivity including mainly the chemical methods for the successful reduction of dioxothiadiazoles to their anion radical forms and the ability to form coordination compounds. Finally, the magnetic properties of dioxothiadiazole radical anions and the metal complexes involving dioxothiadiazoles as ligands are discussed, including simple alkali metal salts and d-block coordination compounds. The last section is a prospect of other uses of dioxothiadiazole-containing molecules reported in the literature followed by the perspectives and possible future research directions involving these compounds.

8.
Angew Chem Int Ed Engl ; 60(5): 2330-2338, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124080

RESUMO

Bistable and stimuli-responsive molecule-based materials are promising candidates for the development of molecular switches and sensors for future technologies. The CN-bridged {NH4 [Ni(cyclam)][Fe(CN)6 ]⋅5 H2 O}n chain exists in two valence states: NiII -FeIII (1HT ) and NiIII -FeII (1LT ) and shows unique multiresponsivity under ambient conditions to various stimuli, including temperature, pressure, light, and humidity, which generate measurable response in the form of significant changes in magnetic susceptibility and color. The electron-transfer phase transition 1LT ↔1HT shows room-temperature thermal hysteresis, can be induced by irradiation, and shows high sensitivity to small applied pressure, which shifts it to higher temperatures. Additionally, it can be reversibly turned off by dehydration to the {NH4 [NiII (cyclam)][FeIII (CN)6 ]}n (1 d) phase, which features the NiII -FeIII valence state over the whole temperature range, but responds to pressure by yielding NiIII -FeII above 1.06 GPa.

9.
Chemistry ; 26(49): 11187-11198, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227503

RESUMO

Discrete molecular species that can perform certain functions in response to multiple external stimuli constitute a special class of multifunctional molecular materials called smart molecules. Herein, cyanido-bridged coordination clusters {[FeII (2-pyrpy)2 ]4 [MIV (CN)8 ]2 }⋅4 MeOH⋅6 H2 O (M=Mo (1 solv), M=W (2 solv) and 2-pyrpy=2-(1-pyrazolyl)pyridine are presented, which show persistent solvent driven single-crystal-to-single-crystal transformations upon sorption/desorption of water and methanol molecules. Three full desolvation-resolvation cycles with the concomitant change of the host molecules do not damage the single crystals. More importantly, the Fe4 M2 molecules constitute a unique example where the presence of the guests directly affects the pressure-induced thermal spin crossover (SCO) phenomenon occurring at the FeII centres. The hydrated phases show a partial SCO with approximately two out-of-four FeII centres undergoing a gradual thermal SCO at 1 GPa, while in the anhydrous form the pressure-induced SCO effect is almost quenched with only 15 % of the FeII centres undergoing high-spin to low-spin transition at 1 GPa.

10.
Inorg Chem ; 59(18): 13489-13501, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32907320

RESUMO

The preparation, structures, and electrochemical and magnetic properties supported by density functional theory (DFT) calculations of three new copper(II) compounds with [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 1,1-dioxide (td) and its radical anion (td·-) are reported: {[CuIICl(td)](µ-Cl)2[CuIICl(td)]} (1), which incorporates only neutral td ligands; [CuIICl(td·-)(td)]·2MeCN (2), which comprises one neutral td and one radical td·-; and PPN[CuIICl(td·-)2]·2DMA (3), where CuII ions are coordinated by two radical anions td·- (DMA, dimethylacetamide; PPN+, the bis(triphenylphosphine)iminium cation). All three compounds show interesting paramagnetic behavior with low-temperature features indicating significant antiferromagnetic coupling. The magnetic properties of 1 are dominated by CuII···CuII interactions (JCuCu) mediated through the Cl- bridges, while the magnetic properties of 2 and 3 are governed mainly by the td·-···td·- (Jtdtd) and CuII-td·- (JCutd) exchange interactions. The structure of 2 features only two major magnetic coupling pathways enabling the fitting of experimental data with Jtdtd = -36.0(5) cm-1 and JCutd = -12.6(2) cm-1 only. Compound 3 exhibits a complex network of magnetic contacts. Attempt to approximate its magnetic behavior using only a local magnetic contacts model resulted in Jtdtd = -5.6(1) cm-1 and two JCutd constants, -12.4(2) and -22.6(4) cm-1. The experimental fitting is critically compared with the results of broken symmetry density functional theory (BS DFT) calculations for inter- and intramolecular contacts. More consistent results were obtained with the M06 functional as opposed to popular B3LYP, which encountered problems reproducing some of the experimental intermolecular exchange interactions. Electrochemical measurements of 2 and 3 in MeCN showed three reversible nearly overlapping redox peaks appearing in a narrow potential range of -600 to -100 mV vs Fc/Fc+. Small differences between the redox events suggest that such compounds may be good candidates for new switchable materials, where the electron transfer between the metal and the ligand center is triggered by temperature, pressure, or light (valence tautomerism).

11.
Inorg Chem ; 59(13): 8925-8934, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510938

RESUMO

The rational design of coordination frameworks combining more than two different metal ions using a self-assembly approach is challenging because it rarely offers sufficient control over the building blocks at the actual self-assembly stage. In this work, we present a successful two-step strategy toward heterotrimetallic coordination frameworks by employing a new bimetallic [(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]4- secondary building unit (SBU). This anionic moiety has been isolated and characterized as a simple salt with an organic dppipH22+ cation (dppipH2)2[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·15H2O (1) (dppip = 1,4-di(4-pyridinyl)piperazine). The salt presents a second-order phase transition related to cation conformational change around 250 K and a photomagnetic effect after irradiation with 450 nm light at 10 K. When combined with aqueous solutions of MnII or CuII complexes, it forms either a one-dimensional chain [MnII(dpop)][MnII(dpop)(H2O)][(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·36H2O (2) (dpop = 2,13-dimethyl-3,6,9,12,18-pentaazabicyclo-[12.3.1]octadeca-1(18),2,12,14,16-pentaene) or a photomagnetic two-dimensional honeycomb network [CuII(cyclam)]2[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·40.89H2O (3) (cyclam = 1,4,8,11-tetraazacyclotetradecane), both characterized by very large cavities in their structure filled with solvent molecules. Both 2 and 3 incorporate three different transition-metal ions and constitute a new family of 3d-4d-5d coordination frameworks. Moreover, compound 3 inherits the photomagnetic properties of the MoPtMo SBU.

12.
Inorg Chem ; 59(9): 5872-5882, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32309930

RESUMO

Chiral photomagnets compose a class of multifunctional molecule-based materials with light-induced alteration of magnetization and chiral properties. The rational design and synthesis of such assemblies is a challenge, and only few such systems are known. Herein, the remarkable octacyanide-bridged enantiomeric pair of 1-D chains [Cu((R,R)-chxn)2]2[Mo(CN)8]·H2O (1R) and [Cu((S,S)-chxn)2]2[Mo(CN)8]·H2O (1S) exhibiting enantiopure structural helicity, which results in optical activity in the 350-800 nm range as confirmed by natural circular dichroism (NCD) spectra, is reported. The photomagnetic effects of 1R, 1S, and 1rac result from the blue light excitation (436 nm) of the photomagnetically active octacyanidomolybdate(IV) ions. In the excited state MoIVHS centers with S = 1 couple antiferromagnetically with the neighboring CuII centers with JCuMo values of -1.3, -1.0, and -1.1 cm-1 for 1R, 1S, and 1rac, respectively. The values of thermal relaxation energy barriers have been estimated as 142 and 356 K for 1R and 1S, being comparable with the energy range of the thermal bath. The value for 1rac reveals a significantly lower value of 75 K. On the basis of these results the value of gMoHS has been estimated to be in the range 4.8-5.8.

13.
Angew Chem Int Ed Engl ; 59(36): 15741-15749, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485003

RESUMO

A two-step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3-CNpy)2 ][Re(CN)8 ]}⋅H2 O (1) (3-CNpy=3-cyanopyridine) assembly consisting of cyanido-bridged FeII -ReV square grid sheets bonded by Cs+ ions. The presence of two non-equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non-covalent interlayer interactions involving Cs+ , [ReV (CN)8 ]3- ions, and 3-CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin-transition phenomenon could be tuned by an external pressure giving the room-temperature range of SCO, as well as by visible-light irradiation, inducing an efficient recovery of the high-spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect.

14.
Angew Chem Int Ed Engl ; 59(8): 3117-3121, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31793123

RESUMO

The photoinduced properties of the octacoordinated complex K4 MoIV (CN)8 ⋅2 H2 O were studied by theoretical calculations, crystallography, and optical and magnetic measurements. The crystal structure recorded at 10 K after blue light irradiation reveals an heptacoordinated Mo(CN)7 species originating from the light-induced cleavage of one Mo-CN bond, concomitant with the photoinduced formation of a paramagnetic signal. When this complex is heated to 70 K, it returns to its original diamagnetic ground state, demonstrating full reversibility. The photomagnetic properties show a partial conversion into a triplet state possessing significant magnetic anisotropy, which is in agreement with theoretical studies. Inspired by these results, we isolated the new compound [K(crypt-222)]3 [MoIV (CN)7 ]⋅3 CH3 CN using a photochemical pathway, confirming that photodissociation leads to a stable heptacyanomolybdate(IV) species in solution.

15.
J Am Chem Soc ; 141(48): 19067-19077, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31747269

RESUMO

Magnetic photoswitching is a highly important but relatively rare phenomenon for enabling optical writing/reading of the magnetic state of a molecule. In this work, an unprecedented site-selective double photoswitching is reported from the assembly of two different "photomagnetic chromophores" into a single hexanuclear molecule: namely, a spin-crossover Fe(II) center exhibiting light-induced excited spin state trapping (LIESST) and a photochemically active octacyanometalate(IV) unit. Four different magnetization levels are accessible through the appropriate combination of violet/red light and temperature, results that highlight the potential of photomagnetic molecules as future molecular memory cells.

16.
J Am Chem Soc ; 140(46): 15876-15882, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30376320

RESUMO

"Converting" light energy to magnetization is the attribute of molecule-based compounds called photomagnets and is inaccessible for conventional magnetic solids. The design and synthesis of such compounds, however, is a formidable challenge, and only a few examples are known, all with rather low magnetic ordering temperatures well below the boiling point of liquid nitrogen. Herein, a cyanide-bridged coordination polymer, {[MnII(imidazole)]2[WIV(CN)8]} n, exhibiting the highest light-induced magnetic ordering temperature ever observed and a magnetic hysteresis loop up to 90 K is reported. The photomagnetic effect results from the blue light excitation (450 nm) of the constituent octacyanotungstate(IV) moiety, which then couples magnetically with manganese(II), resulting in light-induced ferrimagnetic ordering. The reported coordination framework shows also outstanding water sorption properties that are strongly correlated with the photomagnetic functionality. The photoswitching observed in the anhydrous state is completely quenched by the reversible capture of water, with the fully hydrated phase becoming practically non-photomagnetic.

17.
Chemistry ; 24(61): 16302-16314, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30030854

RESUMO

The synthesis, crystal structures, spectroscopic characterization, and comprehensive quantum-chemical calculations for a novel series of anion-π hybrid salts (XPh4 )2 [M(CN)4 ][HAT(CN)6 ]⋅3 MeCN (X=P, M=NiII (1), PdII (3), PtII (5); X=As, M=NiII (2), PdII (4), PtII (6); HAT(CN)6 =1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile) are presented. The systems comprise 1D {[M(CN)4 ]2- ;[HAT(CN)6 ]}∞ stacks, in which the electron-rich metal complexes adjust their orientation to match the electron-deficient areas of HAT(CN)6 . Electronic charge-transfer interactions along the stacks result in polarization of electron density within HAT(CN)6 and in perturbations along the {[M(CN)4 ]2- ;[HAT(CN)6 ]}∞ contacts. Electronic structure analysis suggests, for example, a relocation of 0.1-0.2 e per molecule from [M(CN)4 ]2- to HAT(CN)6 and anion-π interaction energies of around -65 kcal mol-1 . A reversible structural single-crystal-to-single-crystal transformation, through desolvation/resolvation processes in the solid state, is also reported and a scheme for the formation of anion-π [M(CN)4 ]2- /HAT(CN)6 adducts in MeCN is proposed.

18.
Chemistry ; 24(35): 8857-8868, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29655240

RESUMO

The homoleptic mononuclear compound [Co(bpp-COOMe)2 ](ClO4 )2  (1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)2 ](ClO4 )2  (2) afforded the derivative [Zn0.95 Co0.05 (bpp-COOMe)2 ](ClO4 )2  (3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.

19.
Chemistry ; 23(15): 3548-3552, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28055144

RESUMO

A family of distorted trigonal pyramidal transition-metal complexes [MII (N3 N)Li(THF)] (M=Mn, Fe, Co, Ni) have been studied as candidates for mononuclear single-molecule magnets. Magnetic anisotropy of the family depends on the electronic configuration of the central ion, with the Co analogue exhibiting pronounced SMM behavior.

20.
Inorg Chem ; 56(21): 12914-12919, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28990775

RESUMO

Two new hexanuclear octahedral cyanido-bridged clusters, {[CdII(bpy)2]4[WIV(CN)8]2}·10H2O (Cd4W2) and {[CdII(bpy)2]4[MoIV(CN)8]2}·10H2O (Cd4Mo2), have been obtained and characterized structurally and photomagnetically. Both compounds show a very rare and reversible single-crystal-to-single-crystal transformation upon dehydration accompanied by marked color changes in the case of Cd4W2. Moreover, irradiation of Cd4Mo2 using 436 nm light induces a reversible photomagnetic effect due to the LIESST-like singlet-triplet transition at the MoIV center. Analogous photomagnetic experiments for Cd4W2 did not lead to any significant change of its magnetic moment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA