Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Evol Biol ; 19(1): 73, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849933

RESUMO

BACKGROUND: Synbranchidae or swamp eels are fishes belonging to the order Synbranchiformes that occur in both freshwater and occasionally in brackish. They are worldwide distributed in tropical and subtropical rivers of four different continents. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. Inside this group, a still almost unexplored species under the cytogenetic point of view is the Asian swamp eel Monopterus albus, a widely distributed species throughout Asia. Here, we tested the hypothesis of chromosomal speciation, where a case of sympatric speciation may occur as the primary consequence of chromosomal rearrangements. We performed a comparative chromosomal analysis of M. albus from 22 different localities in Thailand, using distinct staining methods (C-banding, Ag-NO3, and Chromomycin A3), and FISH with repetitive DNA probes (5S rDNA, 18S rDNA, Rex1 element and microsatellite repeats). RESULTS: This approach evidenced two contrasting karyotypes (named karyomorphs A and B) that varied concerning their 2n and repetitive DNAs distribution, where chromosomal fusions and pericentric inversions were involved in such differentiation. While the karyomorph A has 2n = 24 chromosomes, the karyomorph B has only 2n = 18, both with NF = 24. In addition, karyomorph A contains only acrocentric chromosomes, while karyomorph B contains three unique metacentric pairs. These features highlight that M. albus has already gone through a significant genomic divergence, and may include at least two cryptic species. CONCLUSIONS: This marked chromosomal differentiation, likely linked to the lifestyle of these fishes, point to the occurrence of a chromosomal speciation scenario, in which fusions and inversions had a prominent role. This highlights the biodiversity of M. albus and justifies its taxonomic revision, since this nominal species may constitute a species complex.


Assuntos
Evolução Biológica , Cromossomos/genética , Especiação Genética , Variação Genética , Cariótipo , Smegmamorpha/genética , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Geografia , Metáfase/genética , Repetições de Microssatélites/genética , Tailândia
2.
Curr Genomics ; 19(3): 207-215, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606908

RESUMO

BACKGROUND: The question how evolution and speciation work is one of the major interests of biology. Especially, genetic including karyotypic evolution within primates is of special interest due to the close phylogenetic position of Macaca and Homo sapiens and the role as in vivo models in medical research, neuroscience, behavior, pharmacology, reproduction and Acquired Immune Deficiency Syndrome (AIDS). MATERIALS & METHODS: Karyotypes of five macaque species from South East Asia and of one macaque species as well as mandrill from Africa were analyzed by high resolution molecular cytogenetics to obtain new insights into karyotypic evolution of old world monkeys. Molecular cytogenetics applying human probes and probe sets was applied in chromosomes of Macaca arctoides, M. fascicularis, M. nemestrina, M. assamensis, M. sylvanus, M. mulatta and Mandrillus sphinx. Established two- to multicolor-fluorescence in situ hybridization (FISH) approaches were applied. Locus-specific probes, whole and partial chromosome paint probes were hybridized. Especially the FISH-banding approach multicolor-banding (MCB) as well as probes oriented towards heterochromatin turned out to be highly efficient for interspecies comparison. CONCLUSION: Karyotypes of all seven studied species could be characterized in detail. Surprisingly, no evolutionary conserved differences were found among macaques, including mandrill. Between the seven here studied and phenotypically so different species we expected several via FISH detectable karyoypic and submicroscopic changes and were surprised to find none of them on a molecular cytogenetic level. Spatial separation, may explain the speciation and different evolution for some of them, like African M. sylvanus, Mandrillus sphinx and the South Asian macaques. However, for the partially or completely overlapping habitats of the five studied South Asian macaques the species separation process can also not be deduced to karyotypic separation.

3.
PLoS One ; 19(7): e0305828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024404

RESUMO

The family Cyprinidae is the largest freshwater fish group with 377 genera and over 3,000 described species. However, this group of fish has very limited cytogenetics and advanced molecular cytogenetics information. Therefore, in this study the karyotypes and other chromosomal characteristics of 15 species in the tribe Systomini (Cyprininae) were examined using Ag-NOR staining along with fluorescence in situ hybridization (5S and 18S rDNA). All species share a similar karyotype (2n = 50; NF = 88-100) in both sexes and no differentiated sex chromosome was observed. Chromosomes bearing NOR sites ranged from one to four pairs among the species, mostly mapped adjacent to telomeres in the short arms of distinct pairs in all analyzed species. This difference indicates an extensive rearrangement of chromosomes including genomic differences. The use of the 5S and 18S rDNA probe confirmed the Ag-NOR sites interstitially located in the telomeric regions of distinct chromosomes, characterizing an interspecies variation of these sites. In most of its analyzed species, the signals of 18S rDNA probe corresponded to the Ag-NOR regions, except in Barbonymus altus, B. gonionotus, B. schwanenfeldii and Puntius brevis having these signals on the same as Ag-NOR regions and other sites.


Assuntos
Cyprinidae , Hibridização in Situ Fluorescente , Cariótipo , Animais , Cyprinidae/genética , Cyprinidae/classificação , Masculino , Feminino , Evolução Molecular , Cariotipagem , RNA Ribossômico 18S/genética , Especificidade da Espécie , Cromossomos/genética , DNA Ribossômico/genética , Telômero/genética
5.
Front Genet ; 13: 841681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360869

RESUMO

The chromosomal homologies of human (Homo sapiens-HSA) and Trachypithecus phayrei (TPH-Phayre's leaf-monkey, family Cercopithecidae) have previously been studied by using classical chromosome staining/banding and fluorescence in situ hybridization (FISH) from the 1970s to 1990s. In this study, we carried out molecular cytogenetics applying human multicolor banding (MCB), locus-specific, and human heterochromatin-specific probes to establish the first detailed chromosomal map of TPH, which was not available until now. Accordingly, it was possible to precisely determine evolutionary-conserved breakpoints (ECBs) and the orientation of evolutionary-conserved segments compared to HSA. It could be shown that five chromosomes remained completely unchanged between these two species, and 16 chromosomes underwent only intrachromosomal changes. In addition, 50 ECBs that failed to be resolved in previous reports were exactly identified and characterized in this study. It could also be shown that 43.5% of TPH centromere positions were conserved and 56.5% were altered compared to HSA. Interestingly, 82% ECBs in TPH corresponded to human fragile sites. Overall, this study is an essential contribution to future studies and reviews on chromosomal evolution in Cercopithecidae.

6.
Front Genet ; 12: 760244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777477

RESUMO

Fishes of the genus Acanthurus (Acanthuridae) are strongly related to reef environments, in a broad biogeographic context worldwide. Although their biological aspects are well known, cytogenetic information related to this genus remains incipient. In this study, Acanthurus species from populations inhabiting coastal regions of the Southwest Atlantic (SWA), South Atlantic oceanic islands (Fernando de Noronha Archipelago and Trindade Island), Greater Caribbean (GC), and Indo-Pacific Ocean (the center of the origin of the group) were analyzed to investigate their evolutionary differentiation. For this purpose, we employed conventional cytogenetic procedures and fluorescence in situ hybridization of 18S rDNA, 5S rDNA, and H3 and H2B-H2A histone sequences. The Atlantic species (A. coeruleus, A. chirurgus, and A. bahianus) did not show variations among them, despite their vast continental and insular distribution. In contrast, A. coeruleus from SWA and GC diverged from each other in the number of 18S rDNA sites, a condition likely associated with the barrier created by the outflows of the Amazonas/Orinoco rivers. The geminate species A. tractus had a cytogenetic profile similar to that of A. bahianus. However, the chromosomal macrostructures and the distribution of rDNA and hisDNA sequences revealed moderate to higher rates of diversification when Acanthurus species from recently colonized areas (Atlantic Ocean) were compared to A. triostegus, a representative species from the Indian Ocean. Our cytogenetic data covered all Acanthurus species from the Western Atlantic, tracked phylogenetic diversification throughout the dispersive process of the genus, and highlighted the probable diversifying role of ocean barriers in this process.

7.
Mol Cytogenet ; 9: 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26893612

RESUMO

BACKGROUND: The question what makes Homo sapiens sapiens (HSA) special among other species is one of the basic questions of mankind. A small contribution to answer this question is to study the chromosomal constitution of HSA compared to other, closely related species. In order to check the types and extent of evolutionary conserved breakpoints we studied here for the first time the chromosomes of Hylobates pileatus (HPI) compared to HSA and Hylobates lar (HLA) by means of molecular cytogenetics. RESULTS: Overall, 68 new evolutionary conserved breakpoints compared to HSA could be characterized in this study. Interestingly, only seven of those were different compared to HLA. However, application of heterochromatic human DNA-probes provided evidence that observed high chromosomal rearrangement rates of gibbons in HPI happened rather in these repetitive elements than in euchromatin, even though most centromeric positions were preserved in HPI compared to HSA. CONCLUSION: Understanding genomes of other species and comparing them to HSA needs full karyotypic and high resolution genomic data to approach both: euchromatic and heterochromatic regions of the studied chromosome-content. This study provides full karyotypic data and previously not available data on heterochromatin-syntenies of HPI and HSA.

8.
Heliyon ; 1(3): e00042, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27441227

RESUMO

Comparative cytogenetic analysis in New World Monkeys (NWMs) using human multicolor banding (MCB) probe sets were not previously done. Here we report on an MCB based FISH-banding study complemented with selected locus-specific and heterochromatin specific probes in four NWMs and one Old World Monkey (OWM) species, i.e. in Alouatta caraya (ACA), Callithrix jacchus (CJA), Cebus apella (CAP), Saimiri sciureus (SSC), and Chlorocebus aethiops (CAE), respectively. 107 individual evolutionary conserved breakpoints (ECBs) among those species were identified and compared with those of other species in previous reports. Especially for chromosomal regions being syntenic to human chromosomes 6, 8, 9, 10, 11, 12 and 16 previously cryptic rearrangements could be observed. 50.4% (54/107) NWM-ECBs were colocalized with those of OWMs, 62.6% (62/99) NWM-ECBs were related with those of Hylobates lar (HLA) and 66.3% (71/107) NWM-ECBs corresponded with those known from other mammalians. Furthermore, human fragile sites were aligned with the ECBs found in the five studied species and interestingly 66.3% ECBs colocalized with those fragile sites (FS). Overall, this study presents detailed chromosomal maps of one OWM and four NWM species. This data will be helpful to further investigation on chromosome evolution in NWM and hominoids in general and is prerequisite for correct interpretation of future sequencing based genomic studies in those species.

9.
Mol Cytogenet ; 6(1): 51, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24266901

RESUMO

BACKGROUND: In the present study, conventional and molecular cytogenetic studies were performed in the naked catfish Mystus bocourti (Siluriformes, Bagridae). Besides the conventional Giemsa staining, fluorescence in situ hybridization (FISH) using nine classes of repetitive DNAs namely 5S and 18S rDNAs, U2 snRNA, the microsatellites (CA)15 and (GA)15, telomeric repeats, and the retrotransposable elements Rex1, 3 and 6. was also performed. RESULTS: M. bocourti had 2n = 56 chromosomes with a karyotype composed by 11 m + 11 sm + 6 st/a and a fundamental number (NF) equal to 100 in both sexes. Heteromorphic sex chromosome cannot be identified. The U2 snRNA, 5S and 18S rDNA were present in only one pair of chromosomes but none of them in a syntenic position. Microsatellites (CA)15 and (GA)15 showed hybridization signals at subtelomeric regions of all chromosomes with a stronger accumulation into one specific chromosomal pair. FISH with the telomeric probe revealed hybridization signals on each telomere of all chromosomes and interstitial telomeric sites (ITS) were not detected. The retrotransposable elements Rex1, 3 and 6 were generally spread throughout the genome. CONCLUSIONS: In general, the repetitive sequences were not randomly distributed in the genome, suggesting a pattern of compartmentalization on the heterochromatic region of the chromosomes. Little is known about the structure and organization of bagrid genomes and the knowledge of the chromosomal distribution of repetitive DNA sequences in M. bocourti represents the first step for achieving an integrated view of their genomes.

10.
Mol Cytogenet ; 6(1): 6, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23374863

RESUMO

BACKGROUND: The multicolor banding (MCB/mBAND) technique provides a unique opportunity to characterize intrachromosomal rearrangements and to determine chromosomal breakpoints. Until recently, MCB probes have only been available for human and some murine chromosomes. Generation of MCB probes for chromosomes of other species, useful and required in many cytogenetics research fields, was limited by technical difficulties. MCB probes are established by chromosome microdissection followed by whole genomic DNA amplification. However, unambiguous identification of the target chromosome is required for MCB-probe establishment. Previously proposed protocols suggested G-banding staining or preliminary FISH with whole chromosome paints (WCP) as methods to identify the chromosome of interest. RESULTS: Here we present a complete workflow for MCB probe generation for those cases and species where chromosome morphology is too challenging to recognize target chromosomes by conventional methods and where WCP probes are not available. The workflow was successfully applied for murine chromosomes that are difficult to identify unambiguously. Additionally, we showed that glass-needle based microdissection enables establishment of a whole set of WCP paints by microdissection of individual chromosomes of a single metaphase CONCLUSIONS: The present method can be applied for generation of whole or region-specific DNA probes for species, where karyotyping of G-banded chromosomes is challenging due to similar chromosome morphology and/or chromosome banding patterns.

11.
Mol Cytogenet ; 6(1): 58, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24341374

RESUMO

BACKGROUND: The chromosomal homologies of human (Homo sapiens = HSA) and silvered leaf monkey (Trachypithecus cristatus = TCR) have been previously studied by classical chromosome staining and by fluorescence in situ hybridization (FISH) applying chromosome-specific DNA probes of all human chromosomes in the 1980s and 1990s, respectively. RESULTS: However, as the resolution of these techniques is limited we used multicolor banding (MCB) at an ~250-band level, and other selected human DNA probes to establish a detailed chromosomal map of TCR. Therefore it was possible to precisely determine evolutionary conserved breakpoints, orientation of segments and distribution of specific regions in TCR compared to HSA. Overall, 69 evolutionary conserved breakpoints including chromosomal segments, which failed to be resolved in previous reports, were exactly identified and characterized. CONCLUSIONS: This work also represents the first molecular cytogenetic one characterizing a multiple sex chromosome system with a male karyotype 44,XY1Y2. The obtained results are compared to other available data for old world monkeys and drawbacks in hominoid evolution are discussed.

12.
Pak J Biol Sci ; 12(6): 526-9, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19580004

RESUMO

Nepenthes gracilis Korth. is a member of carnivorous plants in family Nepenthaceae. The plants have beautiful and economically important pitchers. It is interesting to study the protein(s) correlated with the pitcher. Crude proteins were extracted from leaf, leaf with developing pitcher and developed pitcher of the same plant and analyzed by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Two protein bands with molecular weights of 42.7 and 38 kDa were obtained from young leaf and leaf with developing pitcher, respectively. The 42.7 kDa protein was identified as phosphoglycerate kinase (PGK) by Liquid Chromatography Mass Spectrometry (LC-MS/MS), but the 38 kDa band is an unknown protein. Both proteins were differentially expressed in each developing stage of the pitcher, thus may be powerful candidates play role in development pathway of leaf and pitcher.


Assuntos
Extratos Vegetais/química , Proteínas de Plantas , Sarraceniaceae/crescimento & desenvolvimento , Sarraceniaceae/fisiologia , Sequência de Aminoácidos , Cromatografia Líquida , Espectrometria de Massas , Dados de Sequência Molecular , Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sarraceniaceae/anatomia & histologia , Sarraceniaceae/metabolismo , Alinhamento de Sequência
13.
Pak J Biol Sci ; 10(16): 2639-45, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19070075

RESUMO

The cytogenetics of eight Felidae species in Thailand were investigated by the colchicines-hypotonic fixation-air drying technique followed by a conventional technique. All species studied have an identical number of 38 diploid chromosomes, indicating a close genetic relationship among species. At a deep study level, the genetic relationships of eight Felidae species were accessed by the AFLP method. Blood samples were collected from sources locating in their original regions for DNA extraction. With ten successful primer combinations, a total of 4208 scorable bands were generated. Of these bands, 18.91% are polymorphic. Percentages of Polymorphic Bands (PPB) for each primer combination range from 15.00 to 23.59%. The generating bands were used for dendrogram construction. The average genetic similarity values among all Felidae species are 68.20% (between Panthera tigris and Neofelis nebulosa) to 85.53% (between Prionailurus bengalensis and Prionailurus viverrinus). The dendrogram shows that the eight Felidae species were clustered together and the subfamily Pantherinae and Felinae with Neofelis nebulosa are distinguished. The Felinae, Prionailurus bengalensis, Prionailurus viverrinus, Catopuma temminckii, Felis chaus, Pardofelis marmorata and Neofelis nebulosa were clustered together with 91% bootstrap support and the Pantherinae, Panthera pardus is clustered with Panthera tigris with 92% bootstrap support. In summary, the ten successful primer combinations can be used to determine genetic differences among eight Thailand Felidae species.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Animais Selvagens/genética , Felidae/genética , Animais , Mapeamento Cromossômico/métodos , Análise por Conglomerados , DNA/sangue , DNA/genética , DNA/isolamento & purificação , Primers do DNA , Diploide , Ecossistema , Marcadores Genéticos , Linfócitos/fisiologia , Polimorfismo Genético , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA